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ABSTRACT 

 
Changes to climate are predicted to have effects on freshwater streams. Stream flows 
are likely to change, with implications for freshwater ecosystems and water quality. Other 
stressors such as population growth, community preferences and management policies 
can be expected to interact in various ways with climate change and stream flows, and 
outcomes for freshwater ecosystems and water quality are uncertain. Managers of 
freshwater ecosystems and water supplies could benefit from being able to predict the 
scales of likely changes. 
 
This project has developed and applied a linked modelling framework to assess climate 
change impacts on water quality regimes and ecological responses. The framework is 
designed to inform water planning and climate adaptation activities. It integrates 
quantitative tools, and predicts relationships between future climate, human activities, 
water quality and ecology, thereby filling a gap left by the considerable research effort so 
far invested in predicting stream flows. 
 
The modelling framework allows managers to explore potential changes in the water 
quality and ecology of freshwater systems in response to plausible scenarios for climate 
change and management adaptations. Although set up for the Upper Murrumbidgee 
River catchment in southern NSW and ACT, the framework was planned to be 
transferable to other regions where suitable data are available. The approach and 
learning from the project appear to have the potential to be broadly applicable. 
 
We selected six climate scenarios representing minor, moderate and major changes in 
flow characteristics for 1oC and 2oC temperature increases. These were combined with 
four plausible alternative management adaptations that might be used to modify water 
supply, urban water demand and stream flow regimes in the Upper Murrumbidgee 
catchment. 
 
The Bayesian Network (BN) model structure we used was developed using both a ‘top 
down’ and ‘bottom up’ approach. From analyses combined with expert advice, we 
identified the causal structure linking climate variables to stream flow, water quality 
attributes, land management and ecological responses (top down). The ‘bottom up’ 
approach focused on key ecological outcomes and key drivers, and helped produce 
efficient models. The result was six models for macroinvertebrates, and one for fish. In 
the macroinvertebrate BN models, nodes were discretised using statistical/empirical 
derived thresholds using new techniques. 
 
The framework made it possible to explore how ecological communities respond to 
changes in climate and management activities. Particularly, we focused on the effects of 
water quality and quantity on ecological responses. The models showed a strong 
regional response reflecting differences across 18 regions in the catchment. In two 
regions the management alternatives were predicted to have stronger effects than 
climate change. In three other regions the predicted response to climate change was 
stronger. Analyses of water quality suggested minor changes in the probability of water 
quality exceeding thresholds designed to protect aquatic ecosystems. 
 
The ‘bottom up’ approach limited the framework’s transferability by being specific to the 
Upper Murrumbidgee catchment data. Indeed, to meet stakeholder questions models 
need to be specifically tailored. Therefore the report proposes a general model-building 
framework for transferring the approach, rather than the models, to other regions.  
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EXECUTIVE SUMMARY 

 
Climate change is predicted to affect Australian freshwater ecosystems by altering the 
quality and quantity of water in rivers. In turn, this may increase the vulnerability of 
aquatic fauna to human impacts and management strategies. Managing freshwater 
ecosystems therefore requires accurate prediction of the changes likely to occur as a 
result of climate change in combination with impacts such as population growth and 
management policies. While considerable effort has been invested in predicting stream 
flow changes under different climate scenarios, we know less about potential water 
quality and ecological responses.  
 
In particular, we lack ways of integrating existing data to predict relationships between 
future climate, human activities, water quality and ecology. The key objective of this 
project was to develop a modelling framework to assess climate change impacts on 
water quality and, consequently, aquatic fauna (macroinvertebrates and native fish 
species). 
 
The catchment of the Upper Murrumbidgee River was selected as a case study because 
it represents many of the issues faced by water management agencies across the 
country. The area has a growing urban population that requires water and waste water 
management for the future without compromising ecological values in freshwaters. 
Climate scenarios were defined and assumptions underpinning each scenario were 
described (project objective 1). Next, hydrological and water quality models were used to 
analyse climate scenarios and assess their outcomes (project objective 2). Third, the 
results of climate scenario analysis were used to assess risks to water quality and 
ecosystems (project objective 3). Finally, the transferability of the proposed modelling 
framework was tested for use in the Goulburn Broken catchment (project objective 4). 
 
We used Bayesian Networks (BN) to model the complex interactions between climate 
impacts, non-climate pressures (such as population growth), adaptation (management) 
decisions, water quality attributes, and ecological responses defined by 
macroinvertebrate and fish communities. The model structure was developed using both 
a ‘top down’ and ‘bottom up’ approach. From expert advice we defined links between 
climate variables, stream flow, water quality attributes, land management and ecological 
responses (top down). The resulting model was then simplified by identifying key 
predictors of ecological response (bottom up) using statistical techniques for 
macroinvertebrates and expert opinion for fish. The bottom-up approach resulted in an 
efficient way to reduce the number of predictor variables (nodes) in the BN models. An 
original 128 initial predictor variables were reduced to between five and nine. The 
selected predictor variables differed depending on the ecological responses and habitat 
types in the river (edge and riffle).  
 
This is important because it highlights the specificity and diversity of relationships in 
freshwater ecosystems. It also highlights the need to be clear about objectives and 
endpoints for predictive modelling. 
 
Three different measures of macroinvertebrate response (Observed/Expected taxa 
score, relative abundance of thermophobic taxa and macroinvertebrate assemblage) 
were used as endpoints in the BN models. Ecological thresholds were empirically 
estimated using a variety of traditional and novel statistical methods. Estimated 
thresholds values were similar between the measure of macroinvertebrate response and 
the method used to identify the threshold. Defined thresholds were used as a novel way 
to determine states in the BN models. In the case of fish, absence/presence of six native 
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species was considered, and thresholds were assigned based on expert opinion and 
literature.  
 
The approach resulted in seven BN models (one model per macroinvertebrate endpoint 
for each river habitat type, and one fish model for the six native fish species). We used 
the BN models to explore ecological responses to changes in climate and management 
activities. Six climate scenarios were selected representing minor, moderate and major 
changes in stream flow for 1oC and 2oC temperature increases. Climate scenarios were 
combined with four plausible alternative ways of managing water supply, demand and 
stream flow, which captured local adaptation initiatives to secure water for the 
catchment’s needs. 
 
The BN modelling indicated that projected water quality changes associated with climate 
change are small in the Upper Murrumbidgee catchment. The probability that thresholds 
designed for the protection of aquatic ecosystems would be violated was negligible 
under most scenarios. However, outcomes varied and models showed strong regional 
responses to climate and management alternatives. Management had the strongest 
impact in the Upper Murrumbidgee and Lower Molonglo regions, where the direct impact 
of adaptation initiatives on water releases (Upper Murrumbidgee) and treated effluent 
discharge (Lower Molonglo) outweighed climate change effects. In contrast, the Upper 
Cotter, Yass and Goodradigbee regions showed a stronger response to climate; 
predicted increased temperatures would affect sensitive macroinvertebrate taxa and 
vulnerable native fish species. Tolerant macroinvertebrate taxa were unlikely to be 
affected by climate change or management alternatives.  
 
Varying regional and ecological responses have significant consequences for the 
prioritisation of adaptation initiatives in response to climate change, suggesting they 
should be applied specifically, not uniformly. In some regions of the Upper 
Murrumbidgee catchment, adaptation initiatives appear to have minimal influence, while 
in others adaptation initiatives may be highly beneficial. In regulated rivers, where future 
climate and management scenarios involve high water demand and decline in indicators 
of river health, managing regulation and demand should be a central strategy for 
protecting freshwater ecosystems. In unregulated but stressed rivers of the region, 
climate change is likely to amplify current negative effects of catchment management 
practices. In these regions, a continued focus on improved catchment management will 
be central to mitigating the effects of climate. 
 
The approach applied in this study may have great value in assessing climate change 
and management impacts in other regions, though regional differences in stakeholder 
priorities and management approaches will mean the models must be altered. Managers 
in the Upper Murrumbidgee catchment are interested in the response of ecosystems and 
water quality to climate and management actions. Conversely, managers in the Goulburn 
Broken catchment are more interested in changes to water quality; for them, 
understanding the implications for river health is a more distant objective. The report 
proposes a model-building framework for use in other regions.  
 
While this project makes a number of significant advances in understanding the impacts 
of climate change and management actions on freshwater ecosystems, a number of 
knowledge gaps remain. Among key areas that should be prioritised for future research 
are: improved capacity to include extreme climatic events and seasonal changes in flow 
in models, and addressing the need for experimental data outside of historical climate 
conditions to which ecosystems have not yet been exposed. 
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1. INTRODUCTION 

This section introduces the study and describes its objectives and the approach it 
has taken: namely, a major case study, scenario planning and application of 
Bayesian Networks. The section also outlines the structure of this final report in 
relation to the contractual reporting obligations. 

1.1 Motivation  

It is generally accepted that the climate is changing. There are predictions of significant 
changes to runoff, stream flow (Arnell 2003; CSIRO 2008; Thodsen 2007) and water 
quality (Delpla et al. 2009; Murdoch, Baron & Miller 2000; Whitehead et al. 2009; Wilson 
& Weng 2011), which will leave freshwater ecosystems vulnerable.   

Australia is particularly exposed to changes in hydrological regimes; communities and 
ecosystems across the country could be at risk (IPCC 2007; PMSEIC IWG 2007). As a 
consequence, the future management of freshwater species and ecosystems, 
particularly those that already are at or near their climate limits, requires predictions of 
the magnitude of changes in flow and water quality likely to occur as a result of the 
combined effects of climate change and other stressors such as population growth, 
community preferences and management policies. The likely success of intervention 
activities (such as translocation of populations) to secure the future of aquatic species, 
depends on information about species’ physiological tolerances, as well as predictions of 
future water quality (and how water quality is distributed). This information is also needed 
to determine Australia’s capacity to achieve conservation goals and set policy direction. 

At present we cannot determine the extent and implications of changes to water quality 
that might result from climate change. Neither can we determine the potential ecological 
consequences of any such changes to water quality. Interactive effects between climate 
change, water quality, water volumes, human use and biota will further complicate 
prediction of consequences. We need to be able to make informed decisions about the 
possible impacts of management adaptation initiatives on the quality of our water 
resources and freshwater ecosystems. To do that, we need to be able to integrate 
quantitative tools — to predict the relationship between water quality and climate 
change.  

1.2 Aim and objectives 

The primary aim of this project was to develop an integrated modelling framework with 
which it is possible to make predictions about different climate and adaptation scenarios, 
and inform water planning and climate adaptation activities. A secondary aim of the 
project was to apply our modelling framework to evaluate possible impacts of adaptation 
initiatives.  

Towards these aims, we set four key objectives, comprising 12 components. 

Objective 1: Estimate the probability, extent and magnitude of water quality changes by 
linking climate attributes to water quality models. This had five components. 

a) Define a set of management scenarios, based on predicted changes in climate 
patterns (scenarios of precipitation and temperature), land use (including bushfires) 
and water demands. 

b) Predict likely changes to flow regimes under the defined climate scenarios. 
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c) Predict changes in frequency distributions and probability of threshold exceedance 
under the defined climate scenarios. 

d) Predict exceedance probabilities for water quality attributes designed to protect 
ecological communities, including the effects of management adaptation initiatives 
(e.g. for waste water management). 

e) Verify the probabilistic water quality models. 

Objective 2: Develop a Bayesian Network model to link the projected changes in water 
quality and quantity and changes in ecosystems, particularly focusing on the probability 
of adverse biological effects. This had three components. 

a) Make an integrated assessment of the relationship between scenarios for climate, 
land use and water demand, and water quality and ecological response 

b) Identify key drivers and ecologically relevant thresholds. 

c) Quantitatively and qualitatively calibrate relationships captured as probabilities in the 
Bayesian Network. 

Objective 3: Use the Bayesian Network models to inform management adaptation 
initiatives. This had three components: 

a) Evaluate the consequences of management adaptation initiatives for future water 
security, and the consequences of waste water management for water quality and 
ecological response. 

b) Evaluate the probability that current water quality regulation will protect ecological 
communities. 

c) Identify priorities (both spatially and in terms of ecological communities) for 
management adaptation initiatives based on probabilities of adverse effects. 

Objective 4: Determine the transferability of the model framework to other regions. This 
had one component  

a) Modify the modelling framework so it can be broadly applicable. 

1.3 Approach  

We combined and used three research approaches to achieve the project’s objectives: a 
case study; scenario planning; and Bayesian Networks. 

1.3.1 Case study: Upper Murrumbidgee catchment 
To develop the integrated modelling framework we selected the catchment of the Upper 
Murrumbidgee River for our case study. The catchment extends from the headwaters of 
the Murrumbidgee River on the Long Plain in Kosciuszko National Park to the Burrinjuck 
Dam near Yass. Tributaries of the Murrumbidgee River within the catchment include the 
Bredbo, Numeralla, Goodradigbee, Cotter and Yass Rivers. Section 2.1 gives a brief 
overview of the catchment. 

This catchment was ideal for this case study because it encapsulates important 
management issues. The area faces significant water supply challenges to meet the 
growing demands of Australia’s largest inland city, Canberra. Water resource managers 
are actively considering adaptation initiatives to secure future water supply for human 
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consumption (ActewAGL 2004) while maintaining and improving the ecological condition 
of these freshwaters (ACT Government 2004).   

Sub-catchments of the Upper Murrumbidgee catchment encompass a range of 
hydrological and ecological conditions: for example, there are significant areas reserved 
for conservation, and others areas subject to intensive development. The catchment has 
also been exposed to the effects of various driving forces (e.g. droughts, bushfires, 
urbanisation), so it is a region in which we can examine the interactive impacts of these 
forces, and develop tools and lessons that may be transferable to other areas. 

In selecting this catchment for the case study we considered the feasibility of 
implementing the proposed modelling framework as well as the effectiveness and 
usability of project outputs. We concluded that: 

• the approach we would be developing has the potential to be nationally relevant, 
because issues active in the Upper Murrumbidgee catchment — stresses from 
urban development, extreme climate conditions, and infrastructure — are being 
faced by water resource management agencies across Australia;  

• the extensive water quality and biological monitoring data sets and historical 
information available for the catchment provided a unique opportunity to review 
projected water quality and climate scenarios in light of historical conditions; 

• there was already a foundation of published hydrological and ecological work in 
the catchment by members of the research team, which would form a sound 
basis for the modelling framework.  

A case study approach can be an effective way to explore and understand complex 
socio-ecological systems. First, environmental issues are context-dependent; they 
cannot be investigated without considering the wide range of factors (e.g. biophysical, 
social, legislative) that affect the phenomenon of interest. Second, a case study 
approach is well suited for addressing “why” and “how” research questions, and for 
generating findings that are directly relevant and applicable to the study area. 

1.3.2 Scenario planning 

Next, we applied ‘scenario planning’ to the case study catchment.  

“Scenario” is defined as “a coherent, internally consistent and plausible description of a 
possible future state of the world” (IPCC 2007). Each scenario represents a story about 
plausible changes in future conditions, the impacts of these interactive changes on the 
sustainability of socio-ecological systems, and the consequences of adaptation decisions 
under each alternative future. Useful scenarios need to be comprehensive, credible, 
relevant and transparent. 

In situations where uncertainty is very high and controllability is very low, scenarios can 
be helpful support in decision making (Schoemaker 1991). For example, climate change 
and water use patterns are beyond the ultimate control of water management authorities. 
In such cases, scenarios can help decision makers formulate hypotheses about the 
future (i.e. “what-if” questions), and envisage their consequences.  

Managers and policy-makers who need to secure human and ecological water 
requirements are looking ahead to the medium and long term. Their planning must be 
able to deal with fundamental shifts in drivers (e.g. a step change in climate conditions). 
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It needs to be robust under various conditions, particularly in environmental policy-
making or where there is a long lead time (e.g. building a new infrastructure), and where 
outcomes may trigger expensive, possibly irreversible consequences (e.g. loss of 
species). By using scenarios, instead of relying on single snapshots of how the future 
may unfold, decision makers are better able to look at a series of alternative 
management policies and assess their outcomes under a set of plausible future 
conditions.  

When used in environmental decision making, scenario planning is an adaptive process 
through which researchers and stakeholder groups work together to share and develop 
credible and stakeholder-relevant information about the future of the system. 

By contrast, forecasting models (no matter how sophisticated they are) assume that past 
patterns will continue to the future. This approach may be effective for short term 
planning, and only in case of incremental changes (Figure 1). 

(i) Choosing and defining a scenario 

According to how a scenario is used to address management questions, there are two 
types of scenarios: (1) exploratory or normative scenarios, and (2) single or combined.  

• Exploratory scenarios postulate changes in the key conditions and then explore 
the possible outcomes. Exploratory scenarios are used for vulnerability analysis 
and adaptation analysis, and for impact assessment. Normative scenarios start 
by postulating a desirable or undesirable future image or system state; then they 
open up pathways to attain or avoid these states.  

• Single scenarios are used to examine one source of future uncertainty (e.g. IPCC 
carbon emission scenarios) or the combined impacts of two or more 
uncertainties. 

Incremental Change

Error in 
prediction

Step Change Time

Amount of 
change

Note: Prediction models assume that past patterns will continue in the future. As long the continuity assumption is 
valid, the error in prediction is relatively small. When the system behaviour exhibits a fundamental shift, prediction 
models fail to capture the new patterns.

Fundamental shift

 

Figure 1. The performance of forecasting-based approaches in cases of incremental and 
radical changes in system behaviour 
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Figure 2.  The scenario planning process adopted in the study
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In the research literature there are several frameworks for structuring and describing a 
scenario planning process (e.g. Mahmoud et al. 2009; Van Vuuren et al. 2012). In 
essence, these frameworks share five main steps or tasks (Figure 2). 

1. Scenario definition. In light of the project objective, researchers work with 
stakeholders and end-users to identify information that is of interest to stakeholders 
and policy making and relevant to possible scenarios. For example, focus areas 
and periods of time, and the focal questions about the system’s future that 
scenarios need to address. 

2. Scenario construction. Researchers, stakeholders and end-users work together to 
identify the drivers (natural and human-induced) that are thought to affect the focal 
questions, directly or indirectly. They determine which drivers are the most 
uncertain and the most influential (i.e. this is qualitative scenario input). In 
quantitative modelling approaches, each driver is then explored to find or construct 
numerical variables and mathematical relationships that quantitatively describe 
changes in this driver (i.e. this is numerical scenario input). 

3. Scenario analysis. Researchers develop analytical methods and models so they 
can make quantitative assessment of the scenarios. They use them to test the 
models’ outputs, estimate uncertainties, and define indicators that will help them in 
reporting results. 

4. Scenario assessment. Researchers interpret and synthesise the outputs of the 
scenarios and their implications for end-users. This might include, for instance, 
identifying the most influential threats, vulnerable spots, and leverage points for 
adaptation interventions. A critical part of this phase is deciding how to 
communicate results and uncertainty estimates to decision makers (e.g. 
vulnerability maps, risk matrices). 

5. Risk management. This phase includes adoption and implementation of 
recommended policies, and goes beyond the scientific inquiry (in terms of time and 
scope). Whereas researchers can still provide advice on risk management issues, 
this phase is mainly the responsibility of decision makers.  

1.3.3 Bayesian Networks 

Bayesian Networks, the third approach used in this project, provided the high level 
integration framework model.  

Bayesian Networks (hereafter BNs) are directed graphical models that use statistical 
inference techniques first proposed by Bayes (Heckerman, Geiger & Chickering 1995; 
Morawski 1989; Olson, Willers & Wagner 1990). BNs model complex interactions 
within ecosystems by calculating the relative probabilities of competing hypotheses, 
given a particular set of conditions (Ludwig 1996). From these calculations, 
researchers can identify the most probable hypothesis (Taylor et al. 1996).  

In a BN model, each variable is represented by a “node” (Charniak 1991). For 
ecological studies nodes can represent either predictor variables — such as 
management regimes, climate scenarios and environmental disturbance factors — or 
response variables, such as changes in macroinvertebrate abundance or richness 
(McNay et al. 2006). Directional arrows link the nodes and indicate causal relationships 
between them (Morawski 1989; Olson, Willers & Wagner 1990).  
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Relationships between different variables represent conditional dependencies. For 
example, researchers can model change in one variable and its resulting independent 
and interactive effects on other nodes in the BN (Stewart-Koster et al. 2010).  

BNs are being increasingly used to model ecological systems (Allan et al. 2012; 
Borsuk, Stow & Reckhow 2003; McCann, Marcot & Ellis 2006; Ticehurst et al. 2007) as 
well as to assist decision making within water resource management (Castelletti & 
Soncini-Sessa 2007; Chan et al. 2010; Molina et al. 2010). BNs have also been used 
as a modelling framework (Borsuk, Stow & Reckhow 2004; Varis & Kuikka 1997), or 
coupled with other types of models (c.f. Liedloff & Smith 2010) to model ecological 
responses.   

BNs are very useful in modelling predictive changes in ecosystem health because they 
do not require design, sampling, randomisation or replication of data sets (Reckhow 
1990), nor sampling within assumed temporal or spatial scales (Ellison 1996; Smith et 
al. 2007). This means several data sets can effectively be combined within the one 
model.  

Bayesian statistics are also robust when using small sample sizes (Gazey & Staley 
1986; Ter Braak & Etienne 2003), and incomplete data sets (Walton & Meidinger 
2006), including those collected from populations that may have been previously 
affected by human activities (McNay et al. 2006). This is because the expectations 
maximisation method used in Bayesian learning can cope with missing observations 
regardless of whether they are random or not (Heckerman, Geiger & Chickering 1995). 
This means that inference can be gained even from field data collected from 
uncontrolled environments with few replicates (Ellison 1996; Smith et al. 2007).  

BNs also allow researchers to attach probabilities to interactions, and so risks and 
uncertainties can be better estimated than in models which are limited to only expected 
values (Reckhow 1999; Uusitalo 2007).  

In this project, we used BNs as the high level integration framework to elicit, capture 
and express our knowledge across the hydrological, water quality and ecological 
domains. This had the advantage of building on pre-existing well developed (and 
tested) disciplinary component models (such as hydrological models) and allowing 
them to be linked to less well developed models (such as ecological response models). 

The visual nature of BNs means results are presented in a highly interpretable format 
for managers, which is an advantage in environmental decision-making (Crome, 
Thomas & Moore 1996; Taylor et al. 1996). BNs also enable scenario testing, which is 
very useful for identifying major levers, such as water quality or management impacts, 
which drive changes within the ecosystem (Hart & Pollino 2008). This made them the 
obvious choice to use in this project. 

1.4 Final report structure 

Combining the three research approaches we were able to achieve our four main 
objectives. We tell the story in a series of separate sections of this report, even though 
the three research approaches were integrated during the study. Figure 3 
illustrates the structure of the study and Table 1 maps each of the objectives of the 
study to sections of the report. 
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Section 2 sets the stage by introducing the case study area — the Upper 
Murrumbidgee River and its catchment, its water resources and ecological situation 
and the legislation and regulations that govern water planning. In Section 2, we outline 
the information we used in defining and constructing the four management adaptation 
alternatives tested in the project. These four scenarios were the first building block for 
subsequent analysis and modelling. 

Section 3 describes the methods we used to predict the flow regime changes within the 
catchment, including the selection of climate scenarios that we used in the study. The 
predicted changes to flow regimes were analysed using hydro-ecological indicators of 
change and compared against previously published effects of river regulation. 
Section 3 describes the linking of flow regime changes to water quality, and the water 
quality modelling approach. In this section we also give the predicted probabilities of 
exceedance for water quality attributes designed to protect ecological communities. 

Section 4 describes the approach we used to investigate the relationships between 
environmental predictors and ecological responses. Specifically, we identified the 
important indicators (predictors) of ecological response (changes to macroinvertebrate 
or fish communities); and we quantified threshold values (change points) in 
environmental predictors for ecological responses (macroinvertebrates). We used this 
information subsequently to structure the integrated BN model and discretise the main 
model nodes. 

Section 5 outlines how we constructed the Bayesian Network that links the theoretical 
future changes in water quality and quantity with changes in the ecosystems. The 
structure of the models is described, as is the discretisation of each node in the 
network. In this section we also assess the main uncertainties and limitations of the 
networks. 

Section 6 describes how we used the BNs to inform the four management adaptation 
alternatives. This section describes a series of ‘story lines’ that demonstrate the use of 
the BN models to explore scenarios both of climate change and of management. We 
evaluate the probability that current (2000s) water quality guidelines will protect 
ecological communities in the future. We explore the likely consequences to water 
quality and aquatic ecology of applying particular management adaptation initiatives for 
future water security and waste water management. Then we put the management 
adaptation alternatives into an order of priority based on the probabilities that they 
could have adverse effects. 

Section 7 assesses the transferability of the model framework to the Goulburn Broken 
catchment — a large area also inland in eastern Australia and to the south-west of the 
case study catchment. We identify how the model could be revised to make it broadly 
applicable. The section presents a framework for a linked modelling approach and 
presents the key findings from this project which will guide future use of the framework. 

Finally, Section 8 describes the top three knowledge gaps we identified during the 
project. 

Detailed results are presented in a number of Appendixes. 
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Figure 3.  Project objectives, the framework of key data or methods developed and used to address these along with report structure
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Table 1. Study objectives and components mapped to sections of the report 
Objective/component Report section  

Objective 1: Estimate the probability, extent and magnitude of water quality 
changes by linking climate attributes to water quality models. 

Section 2 and 
Section 3 

Define a set of management scenarios, based on predicted changes in 
climate patterns (scenarios of precipitation and temperature), land use 
(including bushfires) and water demands. 

Section 2 

Predict likely changes to flow regimes under the defined climate scenarios. Section 3 
Predict changes in frequency distributions and probability of threshold 
exceedance under the defined climate scenarios. 

Section 3 

Predict exceedance probabilities for water quality attributes designed to 
protect ecological communities, including the effects of management 
adaptation initiatives (e.g. for waste water management). 

Section 3 

Verify the probabilistic water quality models. Section 3 
Objective 2: Develop a Bayesian Network model to link the projected 
changes in water quality and quantity and changes in ecosystems, 
particularly focusing on the probability of adverse biological effects.  

Section 4 and 
Section 5 

Make an integrated assessment of the relationship between scenarios for 
climate, land use and water demand, and water quality and ecological 
response. 

Section 4 

Identify key drivers and ecologically relevant thresholds. Section 4 
Quantitatively and qualitatively calibrate relationships captured as 
probabilities in the Bayesian Network. 

Section 5 

Objective 3: Use the Bayesian Network models to inform management 
adaptation initiatives. 

Section 6 

Evaluate the consequences of management adaptation initiatives for future 
water security, and the consequences of waste water management for 
water quality and ecological response. 

Section 6 

Evaluate the probability that current water quality regulation will protect 
ecological communities. 

Section 3 /Section 
4 

Identify priorities (both spatially and in terms of ecological communities) for 
management adaptation initiatives based on probabilities of adverse 
effects. 

Section 6 

Objective 4: Determine the transferability of the model framework to other 
regions. 

Section 7 

Modify the modelling framework so it can be broadly applicable. Section 7 
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2. SCENARIO DEFINITION AND CONSTRUCTION 

This section outlines geographical, ecological and hydrological characteristics of the 
catchment of the Upper Murrumbidgee River — the physical region that is the context for 
this project. It presents relevant information about the region’s hydro-climate and water 
resources (supply and demand), bushfires, factors in human demand for water, 
ecosystem protection and environmental flows. The information helped us decide on four 
theoretical ‘management adaptation alternatives’ for use in modelling future stream flows 
and contributed to the development of conceptual models that underpin the BN 
modelling.  

2.1 Upper Murrumbidgee River catchment 

The Murrumbidgee River is the third longest river in the Murray-Darling Basin (MDB), 
and in Australia. It rises in the Kosciuszko National Park on the Long Plain, and flows 
south-east, then north, and then westward for 1485 km in total (GA 2012), to its 
confluence with the River Murray near Balranald in southern NSW.  

The Upper Murrumbidgee River extends from the source, above Tantangara Dam in 
the Snowy Mountains, to the Burrinjuck Dam wall. The catchment of the Upper 
Murrumbidgee River includes the northern slopes of the Snowy Mountains, and the 
Southern Tablelands region from Bredbo in the Monaro Plains of NSW to undulating 
country near Yass in NSW, and the whole of the Australian Capital Territory (ACT) 
(Figure 4). The catchment is approximately 13,144 km2 in area (Gilmore 2008).  

Vegetation varies across the catchment. It is largely undisturbed by human activity in 
the river’s steep rock gorges and in the Brindabella ranges and the Snowy Mountains 
above Tantangara Reservoir. On the broad river valley flats the vegetation has been 
mostly cleared and replaced by non-native species. Soils on the steep slopes are often 
shallow and stony. On the broader slopes of the foothills, the soils are deeper with clay-
rich subsoils and deep river terraces near the river (UMDR 2011).  

Major streams and tributaries of the Upper Murrumbidgee itself include the Naas River, 
Paddys River and Cotter River (all entirely within ACT), Molonglo River and 
Ginninderra Creek (which cross the NSW–ACT borders) and the Numeralla River, 
Bredbo River, Goodradigbee River and Yass River (all entirely in NSW). 

2.1.1 Hydro-climate and water resources 

Summers in the catchment are warm and winters are cold, and sites at higher altitudes 
are generally cooler (MCMA 1998). Table 2 summarises climate data from stations in 
the catchment.  

The average annual precipitation (including snow) for the Upper Murrumbidgee 
catchment as a whole varies between 1000 and 500 mm (depending on topography 
and position), and there is no particular wet or dry season (Newham 2002; Gilmore 
2008). The Snowy Mountains ranges have a rain-shadow effect on rainfall in the 
Cooma–Bredbo area (Newham 2002). Records at several locations (except Michelago) 
near Canberra show a small decline in rainfall and a decrease in inter-annual variability 
after the mid to late 1980s (ACT Government 2004). However, rainfall in 2010–12 has 
been above average in the region (BoM 2013). Annual average potential evaporation 
exceeds annual average rainfall across the entire catchment (Newham 2002). 
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Figure 4.  A map of the Upper Murrumbidgee catchment (Linternmans, 2002 © Australian 
Capital Territory)  
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Table 2. Average climate data from weather stations throughout the Upper Murrumbidgee 
catchment (Australian Bureau of Meteorology (BoM))  
 

Rainfall (mean annual) Max Temp Min Temp 

Location,  
BoM station no. 
(latitude longitude) 

 

Rainfall 
(mm) 

No. of 
days 

of rain 

No. of 
days 

of rain  
≥ 

25mm 

Mean 
daily 
max 
temp 
(°C) 

Mean  
annual 
no. of 
days  

≥ 40°C 

Mean 
daily 
min 

temp  
(°C) 

Mean 
no. of 
days  
≤ 0°C 

Burrinjuck Dam,  
073007 
(148.6°E 35.0°S) 

925.8 111.1 8.6 20.6 0.5 9.2 7.8 

Gudgenby,  
070172 
(148.9°E 35.75°S) 

767.3 94.1 3.7 17.4 0.0 3.0 114.0 

Yass – Linton Hostel, 
070091  
(148.9°E 34.83°S) 

651.7 94.1 4.8 20.7 0.3 7.2 46.1 

Canberra Airport,  
070014  
(149.20°E 35.31°S) 

616.4 106.2 4.6 19.7 0.1 6.5 59.7 

Queanbeyan Bowling 
Club, 070072  
(149.23°E 35.36°S) 

594.6 75.6 4.8 20.6 N/A 6.4 N/A 

Cooma Lambie St,  
070023  
(149.1°E 36.23°S) 

502.3 91.4 3.0 19.6 N/A 4.7 N/A 

The Upper Murrumbidgee catchment provides water resources for the towns of the 
ACT and surrounding areas — nearly half a million people: Canberra (359,000 
inhabitants), Queanbeyan (41,500 inhabitants), Yass (15,000 inhabitants), and Cooma 
(10,500 inhabitants) (ABS 2011). Most of the ACT’s reticulated water supply (60%) is 
obtained from the Corin, Bendora and Cotter reservoirs in the Cotter River catchment 
(484 km2), with supplementary supply from the Googong Dam on the Queanbeyan 
River, and direct abstraction from the Murrumbidgee River. The catchment’s surface- 
and groundwater resources also provide for irrigated horticulture, such as vineyards, 
and livestock operations.  

Groundwater resources are relatively low-yielding and held in fractured rock such as 
the Upper Murrumbidgee Fractured Rock aquifer (Goode & Daamen 2008). Recharge 
is largely by rainfall, and extraction is managed via licensed bores. Within the ACT, 
groundwater extraction does not exceed the determined sustainable yield. Across the 
14 ACT groundwater management areas, from Upper Murrumbidgee to Cotter, a total 
of 7248 ML is available for use, with water quality similar to that in nearby surface 
waters (ACT SoER 2011). 

2.1.2 Water quality 

Water quality in the Upper Murrumbidgee catchment is influenced by geology, climate, 
hydrology, human activities (agriculture, urban development, urban waste), and 
bushfires. The quality of water flowing in the Snowy Mountains into Tantangara 
Reservoir is generally good, with low to moderate total phosphorus concentrations, 
extremely low total nitrogen concentrations, low turbidity and low concentrations of 
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dissolved salts (Barlow et al. 2005; SCC 2010). As the Murrumbidgee River flows 
downstream there is a gradual decline in water quality as the non-point source 
catchment inputs of sediment, nutrients and salts increase (SCC 2010). 
 
(i) Salinity 

Generally, the rivers of the upper catchment have very low salinity. The Yass River 
catchment and the urbanised Cooma region are exceptions to this (DLWC 1995), with 
extensive areas subject to dryland salinity (DLWC 1995; Marcot et al. 2001; Yass Shire 
Council 2012). There are also several creeks in the ACT in which electrical conductivity 
(EC) values of 300–500 µS/cm have been recorded (DLWC 1995). 

(ii) Nutrients and algal blooms 

Most streams in the Upper Murrumbidgee catchment generally exceed the 
ANZECC/ARMCANZ (2000) guidelines in their concentrations of total phosphorus 
(NSW Government 2010). Even though phosphorus concentrations in Tantangara 
Reservoir are low to moderate, they are higher than expected for a headwater dam 
with no agriculture or human settlement upstream. Concentrations remain good 
upstream of Cooma, but are 2–4 times the concentrations considered low enough to 
reduce the risk of algal blooms. Most of the upper catchment rivers and lakes in the 
ACT are in the ‘good to fair’ category for phosphorus concentration. Exceptions are the 
Murrumbidgee River downstream of the ACT and the Yass River, where high 
phosphorus concentrations can occur (DLWC 1995). The Cooma Sewage Treatment 
Plant is a point source of elevated nitrogen levels (generally above 
ANZECC/ARMCANZ guidelines) in Cooma Creek, a tributary of the Upper 
Murrumbidgee (Tuft et al. 2007).  

The first serious algal blooms reported for the Upper Murrumbidgee catchment 
occurred between April and June 1994. Anabaena populations of between 1000 and 
100,000 cells/mL were recorded from Cooma to Burrinjuck for a week or more at a time 
(DLWC 1995). Algal blooms now are regularly reported in the summer in Lake 
Tuggeranong, Googong Dam and Lake Burley Griffin. Most of the ponded waters more 
than 2 m deep in the Upper Murrumbidgee catchment (including several stormwater-
control ponds) stratify in summer, resulting in concentrations of dissolved oxygen 
declining near the sediment bed, which causes nutrient release from the sediments 
(DLWC 1995; SCC 2010). Examples where such de-oxygenation has been recorded 
include Tantangara and Googong Reservoirs and Lake Burley Griffin (DLWC 1995). 

(iii) Turbidity 

The lower reaches of the major tributaries of the Upper Murrumbidgee River are 
generally more turbid than their feeder streams, though the waters are generally 
considered to be of good quality (DLWC 1995). Major flood events in the catchment 
contribute to periods of elevated turbidity. Bushfires, including the major fire in January 
2003 in the Cotter and Goodradigbee catchments, together with drought, 2002–2010, 
have also contributed to an increase in turbidity after rainfall events in the catchment, 
as a result of a decrease in ground cover (NSW Government 2010).  

(iv) Water quality trends 

In the NSW Government ‘State of the Catchments’ 2010 report, water quality trends for 
temperature, salinity (EC) and turbidity were identified at two sites in the Upper 
Murrumbidgee catchment: in the Murrumbidgee River at Mittagang Crossing (due north 
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of Cooma) and in the Goodradigbee River at Wee Jasper (as it enters the Burrinjuck 
Reservoir), using 30–40 years of data. Water temperature was stable at both sites. 
Turbidity was stable at the Murrumbidgee site but increasing at the Goodradigbee site. 
Salinity was stable at the Goodradigbee site and decreasing at the Murrumbidgee site 
(NSW Government 2010). 

2.1.3 Ecological conditions 

The general ecological condition of the Upper Murrumbidgee catchment has been 
classified as poor (Davies et al. 2008), but there is considerable variation in conditions 
across the catchment, both from place to place and at various times. 

Ecological conditions vary throughout the Upper Murrumbidgee catchment because of 
the non-uniformly distributed impacts of human activities on water quality (e.g. salinity 
and sediment concentrations influenced by agricultural work) and flow regimes affected 
by river regulation (Bowman & Keyzer 2010; Harrison, Norris & Wilkinson 2008; 
Harrison, Wright & Nichols 2011; RSoER 2009). For instance, salinisation is 
recognised as a potential stressor for ecosystems in the Yass River and Molonglo 
River catchments (Bowman & Keyzer 2010; RSoER 2009); while regulation by dams 
affects ecosystems along the Cotter River (Chester & Norris 2006; Nichols et al. 2006) 
and the Murrumbidgee River downstream of Tantangara (SCC 2010).  

Assemblages of macroinvertebrates  in the Upper Murrumbidgee catchment have been 
found to be in poor to very poor condition in areas of the catchment affected by 
agricultural, urban or river-regulation pressures (Davies et al. 2008; Harrison, Wright & 
Nichols 2011). In contrast, macroinvertebrate assemblages within undisturbed areas of 
the catchment in the Namadgi and Kosciuszko National Parks are in ‘reference’ 
condition (‘reference’ condition means ‘near-natural’, or not affected by human 
influences) (Harrison et al. 2011b). Streambed algae (‘periphyton’) also can be affected 
by river regulation, which in turn can alter macroinvertebrate communities (Chester & 
Norris 2006; Nichols et al. 2006).  

Ecological condition within the Upper Murrumbidgee catchment also changes in 
response to extreme events such as floods, drought and bushfires. For example, at 
times of extreme low flow during drought in the regulated Cotter River system, both an 
increase in periphyton cover and a decrease in macroinvertebrate taxonomic richness 
were observed (Chester & Norris 2006; White et al. 2012). 

The fish community of the Upper Murrumbidgee catchment is severely degraded — i.e. 
reduced in species, numbers and proportion in relation to pest fish (Davies et al. 2008; 
Gilligan 2005). Within the catchment there are only 12 native fish species present 
(Lintermans 2002). The catchment also has nine alien fish species, and seven of these 
species have established reproducing populations (Lintermans 2002). Introduced fish 
species dominate the total number of individuals and total fish biomass (Gilligan 2005). 

2.1.4 Legislation and regulations 

Federal and state-level legislation, regulations and guidelines, as well as local-
government policies, govern water resource management in the ACT region and Upper 
Murrumbidgee catchment. The team identified management policies to be examined 
during this study by reviewing water planning documents and information about the 
underpinning legislation and regulations (see the summary in Table 3). 
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 Table 3.  Legislation and regulations that govern water resource management in the Upper Murrumbidgee Catchment 

 Territory (ACT) State (NSW) Commonwealth 

Legislation/ 
Statutory 
Instruments 

• ACT Water Resources Act 1998, 2007 
• ACT Environment Protection Act 1997 
• Nature Conservation Act 1980 
• ACT Planning and Development Act 2008 
• Public Health Act 

• Water Act 1912 
• Water Management Act 2000 
• Water Management (General) Regulation 2011 
• Environment Planning and Assessment Act 1979 
• Snowy Hydro Corporatisation Act 1997 

• Water Act 2007 
• Murray-Darling Basin Plan  
• Water Quality and Salinity management 

Plan 
• Commonwealth Environment Protection and 

Biodiversity Conservation Act 1999 
 

Guidelines 

• Environmental Flow Guidelines (2006, 2011) 
• Environment Protection Regulation (2005)- 

Environment quality guidelines 
• ACT Government People Place Prosperity 

 

• National Water Initiative 
• Australian Guidelines for Water Recycling 
• AUS/NZ Guidelines for Fresh and Marine 

Water Quality 2000 

Strategy 

• ACT Natural Resource Management Plan 
(Bush Capital Legacy) 

• Think Water, Act Water strategy 2004 
• National Capital Plan 
• Canberra Spatial Plan 

 

• NSW 2021 
• NSW Implementation Plan for the National Water 

Initiative 2006 
• NSW Natural Resources Monitoring, Evaluation and 

Reporting Strategy 2010-2015 
• NSW State Groundwater Policy Framework 

Document 
• NSW Diffuse Source Water Pollution Strategy 2009 
• NSW Algal management Strategy 

• Water for the Future 
• Murray Darling Water CAP 
• Basin Salinity Management Strategy 2001-

2015 
• National Water Quality Management 

Strategy 

Policies/ 
Programs 

• Future water options for the ACT region: 
implementation plan 

• Future sewerage options review 
• Water Efficiency (Incentive) Programs 
• Canberra Integrated Urban Waterways 
• Urban Water Sensitive Design 
• Water Management Plan for ACT 

Sportsgrounds 

• Water Compliance Policy 
• Murrumbidgee Catchment Action Plan 

Murrumbidgee monitoring programs 
• Snowy Water Licence October 2011 
• Snowy Water Inquiry Outcomes Implementation 

Deed 2002 
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2.2 Scenario definition: water resource management scenarios 

As explained in Section 1 of the report, this project aimed to predict impacts of climate 
change on water quality and freshwater ecosystems by exploring scenarios of future 
climate, water demand and human activities, via a modelling framework using the 
Upper Murrumbidgee catchment as a case study or context. 

Therefore the first stage of this project was to identify features of the Upper 
Murrumbidgee catchment and its waters (quantity and quality of flows; water demand) 
and ecosystems that needed to be considered when developing the modelling 
framework. The project team: 

• ran meetings and a workshop with the project stakeholders, end-users (ACTEW 
and ACT Government), and field experts to identify the concerns and issues of 
interest with respect to water quality and ecological systems in the Upper 
Murrumbidgee catchment (Dyer et al. 2011); 

• conducted desktop analysis of available literature relevant to the study area and 
issues to be addressed in the project;   

• inquired into data sets and models available for use in constructing scenarios. 

From the findings from these activities, three categories of driving factors (‘drivers’) 
emerged: (1) climate conditions, (2) urban water demand, and (3) adaptation policies. 
(From here on, these three ‘categories’ are termed ‘dimensions’.) Changes in these 
three dimensions in the Upper Murrumbidgee catchment could affect water quality in 
the future.  

To test that possibility, the team identified a series of related questions that the study 
should try to answer. 

(i) In relation to hydro-climate, what would be the impacts of changes in precipitation 
and temperature on water quality attributes? 

o How would changes in stream flow regimes affect water quality attributes? 

o How would change in temperature affect water quality attributes? 

o How would the occurrence of bushfire events alter runoff and stream flow 
regimes? 

(ii) In relation to urban water demand, what would be the impacts of changes in water 
demand on water quality attributes? 

(iii) In relation to adaptation policies, what would be the combined impacts of a set of 
management adaptation alternatives (i.e. supply, demand management, and 
aquatic protection measures) on stream flow regimes, and on biological and 
chemical water quality attributes? 

The next stage was to construct a range of scenarios that would combine likely climate 
conditions and possible intensities of water demand by the region’s residents. 

2.3 Scenario construction 

Having identified key drivers influencing water quality and dependent ecosystems in 
the catchment, the second step in scenario construction was to conceptualise how 
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these drivers affect the system, and then to select and define the variables, data sets, 
and analytical models and methods that we would use to quantify scenarios.  

We recognise that climate is a driver that interacts with other driving factors, including 
population growth, community preferences and management policies. Therefore, 
overall in this project we have taken a systems-based approach which assesses future 
impacts by considering the complex interactions among:  

(1) direct and indirect climate impacts on chemical and biological water quality 
attributes, 

(2) impacts of non-climate pressures, such as population growth, and 

(3) impacts of multi-scale adaptation decisions. 

Below, we discuss the dimensions we identified above, which we later quantified when 
producing the water resource management scenarios — which, in this report, are 
called ‘management adaptation alternatives’. (Appendix B, Table B1 characterises 
each (single) scenario in terms of its underlying drivers, assumptions, 
input/model/output, and uncertainty.) 

2.3.1 Hydro-climate and bushfires 

(i) Climate as a factor modifying water quality and ecosystems 
Climate is one of many drivers that influence water regimes. Yet there is almost a 
consensus among researchers and policy makers that future climate is the ‘biggest 
unknown’. Climate variations (including climate change and variability) are the most 
substantial and challenging factors to be considered in water planning and biodiversity 
protection. Climate exerts direct and indirect pressures on (almost) every aspect of the 
water system: supply, demand, water quality and ecological systems. It is the crucial 
‘switch’ for most disturbances (e.g. fire, drought, flood, pollution), and it also serves as 
a catalyst for other impacts.  

Nevertheless, there is much uncertainty about the magnitude and nature of future 
changes in the climate regime (average, inter-annual variability and extreme events for 
rainfall and evaporation) as well as consequent impacts. For example, climate change 
imposes severe risks to the hydrological cycle and other related natural phenomena 
whose effects extend far beyond human experience and knowledge. Some actual or 
expected climate impacts include: 

• droughts — which may become more frequent and severe; 

• dry soil conditions — which may follow decreased rainfall (especially in autumn) 
combined with increased evaporation; 

• less stream flow — which may result, disproportionately, if there is decline in 
rainfall; 

• bushfires, runoff, sediment — increase in temperature, especially during extreme 
weather and dry catchment conditions, may increase the frequency and intensity of 
bushfires along with the severity of their impacts on runoff and sediment regimes; 

• risks to freshwater ecosystems — increased frequency and duration of heatwaves 
may pose severe risks to freshwater ecosystems; 

• increased water demand — higher air temperatures, combined with decreased 
rainfall, may lead to increase in water demand and exert pressure on the storage 
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reservoirs, especially in the ACT where domestic irrigation constitutes most of the 
ACT water demand. 

The South Eastern Australian Climate Initiative (SEACI) has found that recent drought 
(2002–10) in the southern Murray-Darling Basin and Victoria is unprecedented by other 
recorded droughts since 1900, in:  

• being largely contained to the southern Australian region; 

• having lower year-to-year rainfall variability, with no wet years over the dry spell; 

• the maximum rainfall decline being observed in autumn, and there were also losses 
in winter and spring as in previous droughts; 

• air temperatures steadily rising. 

The drought’s impact on flow in the Murrumbidgee River is shown in Figure 5, recorded 
at Mt McDonald, near where the Murrumbidgee flows out of the ACT towards Yass.  

Findings from SEACI and other programs suggest that1: 

• observed changes may be (at least partially) linked to climate change; 

• a shift in hydro-climatic conditions is expected, most likely towards conditions being 
drier and warmer than the long-term historical average; 

• given that natural variability will still contribute to climate conditions, some wet 
periods can be expected in the short term. 

(ii) Quantifying climate for the scenarios 

To assess climate impacts on stream flow regimes, and other dependent systems 
(socio-economic and bio-physical), we obtained daily hydro-climate data (historical and 
projections) from SEACI2. SEACI uses daily scaling methods to scale historic data to 
outputs from 15 different global climate models (GCMs). SEACI uses two global 
warming scenarios: 1°C or 2°C increases in global average surface air temperature 
(Chiew et al. 2009); and it uses SIMHYD rainfall–runoff modelling to generate daily 
runoff series. 

                                                           
1     For current knowledge on climate and related research programs for the ACT, see Webb 
2009, 2011 
2     SEACI data are available as 0.05o grid cells. Shape files for the Upper Murrumbidgee 
catchment were used to aggregate data at sub-catchment scale. 
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Figure 5. Daily discharge volume (ML/day) for the Murrumbidgee at Mt McDonald  
(1970–2011), showing the low discharge during the drought of 2002–10 
 

 (iii) Bushfire effects on water quality and stream flow  
In the future, it is anticipated that risks of bushfires will increase if the region’s climate 
becomes drier and warmer. Hennessy et al. (2005) investigated how the changes in 
climate conditions will affect the likelihood of fire occurrences in South-eastern 
Australia by 2020 and 2050. They found an increased risk of fire at most sites 
(including the Upper Murrumbidgee catchment). They suggested there will be an 
increase in the average number of days when the Forest Fire Danger Index (FFDI)3 is 
“very high” or “extreme” (reference year 1990: 4% to 25% by 2020, 15–70% by 2050). 
Using improved climate projections, Lucas et al. (2007) updated the findings from the 
2005 study to include FFDI of “very extreme” and “catastrophic”. They predicted an 
increase in the average number of “very extreme” and “catastrophic” days by 2020 and 
2050. 

There has been a history of devastating fires in the Upper Murrumbidgee catchment. 
Pryor (1939) reported that severe bushfires had occurred in the area since the 
European settlement and in the period 1860–80. Table 4 lists major fires (area burnt 
>2600 ha) reported in the Cotter catchment since the beginning of the twentieth 
century (Carey et al. 2003). 
  

                                                           
3 McArthur Forest Fire Danger Index (FFDI) is used throughout Eastern Australia to indicate the fire risk 
where (McArthur, 1967): (FFDI>25%) indicates “very high” risk, (FFDI>50%) indicates “extreme” risk, 
(FFDI>75%) indicates “very extreme”, and (FFDI>100%) is catastrophic. 
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Table 1: Major fires (area burnt >2,600ha) reported in the Cotter Catchment since the 
beginning of the 20th Century. Source: Carey et al. (2003) 

Year Fire description 

1920 Severe and extensive fire across the centre of the ACT and into NSW. 

1926 Lighter winds allowed it to be contained at a fire trail along the Tidbinbilla range. 

1939 Very hot days with low humidity and high winds exacerbated the fire, resulting in 
spot-fires up to 24kms ahead of the fire-front. The fire affected central parts of 
the ACT and the north-western ACT/NSW border. 

1951-52 Resulted from lightning strikes and power line failures, and a severe fire weather 
year. About 20,000ha of grasslands were burnt in the ACT and NSW. 

1979 Affected a large area crossing the north-eastern ACT/NSW border. 

1983 Followed a severe drought and burnt a larger proportion of the southern part of 
the ACT. 

1985 Burnt areas in NSW just across the north-eastern border of the ACT. 

2001 Affected a small region, close to the Canberra area. 

2003 The extremely dry conditions in the catchments, combined with strong wind and 
lightning strikes, caused unprecedented bushfires. As a result, almost 98% of 
the Cotter catchment was burnt out. In the few months after the fire, intense 
rainfall events washed out fire debris and sediment into the reservoirs, which 
caused major water quality problems. 

 

The frequency and intensity of bushfires are influenced by a set of interactive factors 
that vary over short and long terms (Finkele et al. 2006). These factors include (but are 
not limited to): vegetation cover, soil dryness, fuel load, extreme weather conditions 
(e.g. low humidity, high wind speed, and temperature), and random ignition events (e.g. 
human activities).  

Bushfire is another important uncertainty affecting predictions of catchment and river 
health. A bushfire event causes immediate and long term impacts on the catchment 
and stream flow quality and quantity, which are highly dependent on the severity and 
extent of the fire and the proximity of the fire to the streams. Observed impacts include:  

• an initial increase in runoff caused by a loss of vegetation (it may be combined with 
extreme weather events such as were experienced after the 2003 bushfire) which 
may lead to increase in stream flow (Fernandez et al. 2006; Watson et al. 1999);  

• an initial reduction in water quality caused by large amounts of fire ash and debris 
being input to the streams (Minshall 2003);  

• a short-term or medium-term degradation of water quality caused by increased 
erosion and inputs of sediment (Wilkinson et al. 2006); 

• a long-term reduction in stream flow caused by vegetation regrowth (Langford 
1976; Watson et al. 1999). 

ActewAGL and ANU (FIRESCAPE) have modelled the likelihood of future fires in the 
Cotter River catchment. ActewAGL compared two modelling approaches and found the 
results were broadly in agreement (ActewAGL 2011b). 
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To incorporate bushfire effects within the modelling framework we used ACTEW’s 
available fire triggering and vegetation modelling to capture the hydrological effects. 
This approach generates a stochastic fire sequence when particular hydro-climatic 
conditions are met (e.g. inflows are below a certain threshold). The fire model is 
coupled with a vegetation model to simulate the impacts of a fire event on land cover 
and catchment yield. The direct effects of fire on water quality and ecological 
characteristics can be captured by including the fire frequency in the Bayesian 
Network. This then directly links to water quality and ecological attributes. 

2.3.2 Water demand 

As the team identified in the pilot project, urban-style demand for water is also a key 
driving factor in water management in the case study catchment. Size of population 
and water use per head are major components of water demand. In this catchment the 
demand for water that need not be potable is larger than the demand for potable water.  

Here we discuss aspects of population growth and water use in relation to scenario 
construction. We defer discussion of demand management and effluent treatment 
capacity to the next subsection on management adaptation alternatives. 

Human demand for water is a major driver in relation to water security and river health. 
First, water demand puts direct (physical) pressure on water availability and storage 
levels. Second, the quantity and quality of effluent discharged after use of the water 
affects river health. Third, water demand puts (societal and political) pressure on 
government and water authorities to increase supply, either by acquiring new water 
sources (e.g. build a new dam) or by extending the existing capacity (e.g. increase the 
capacity of the Cotter dam). Given that socio-political impacts are external to the scope 
of this project, we focused on quantifying the impacts of water demand in terms of 
water availability and effluent discharge, rather than defining specific policy outcomes.  

To calculate water demand and effluent discharge, it was essential to: (1) predict future 
population size, (2) estimate per capita water use, (3) account for reduction in demand 
in response to demand management, and (4) consider the capacity of the treatment 
facility.  

(i) Population scenario 

Population growth puts increasing pressure on water security. In their seminal book 
“Limits to Growth”, Meadows & Randers (1972) warned that population growth would 
exceed the carrying capacity of the planet, causing an over-degradation of natural 
resources and collapse of dependent ecological and socio-economic systems. For the 
ACT, El Sawah (2010) examined the impacts of structural changes (such as efficient 
water fixtures and appliances), behavioural changes (such as shower time), and 
population growth on water demand and water security. Findings suggested that 
population is the “elephant in the room” which may eventually push water demand 
beyond sustainable limits.  

In 2008, the Australian Bureau of Statistics published three population growth 
scenarios for the ACT and surrounding region: high (Series A), medium (Series B), and 
low (Series C) (ABS 2008). These projections included the planned new developments 
at Tralee and Googong in NSW, near Queanbeyan. In the last three years, observed 
population growth rates have exceeded the ABS’s high growth projections. In water 
planning, ACTEW has based its water supply strategy on the high growth scenario. 
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There is also a possibility that ACT will eventually supply water to a number of nearby 
towns in NSW, such as Yass and Murrumbateman, to provide a secure water supply to 
these growing regional centres (see Figure 6). 
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Figure 6. Projected population for the ACT region water supply (ACTEW, 2011)  
xxx = estimated resident population for ACT and Queanbeyan, pink line (top) = high growth; 
yellow line (middle) = medium; teal line (lowest) = low. 
 

To construct a population scenario, we assumed that: 

1. population growth will follow the high level growth scenario as defined by the ABS. 
2. in year 2015, the ACT will commence to supply water to neighbouring towns. In the 

scenario, the population served across borders is: 
• zero until 2015, and 
• equivalent to an additional 1.6% growth of the ACT population (Figure 6). 

(ii) Per capita water use scenario 

After Perth and Adelaide, the ACT has the third largest per capita consumption in 
Australia (SEWPaC 2006). In the ACT, demand is mainly driven by household 
consumption. As shown in Figure 7, 54% of water demand comes from the household 
sector. About 43% of household consumption (i.e. approximately 24% of total 
consumption) is used for irrigation, reflecting the culture of English-style lawns which is 
dominant in the region (Head & Muir 2007). 

As a part of demand modelling, ACTEW has developed a regression model to estimate 
“unrestricted” per capita water use as a linear function of Canberra Airport rainfall and 
evaporation. The modelling approach separates out the impacts of water restrictions 
(and other demand management policies) on consumption levels, and estimates “only 
climate-driven” per capita water use. For this, consumption data from January 1993 to 
November 2002 are used to calibrate the model’s parameters. Figure 8 shows there 
was a shift in water demand after water restrictions were introduced in late 2002. 
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(Since November 2011, in the present wetter conditions, ACTEW has asked ACT 
residents to observe Permanent Water Conservation Measures, instead of water 
restrictions.)  

(iii) Land-use in relation to water demand and effluent  
Projected land-use changes in the Upper Murrumbidgee catchment include an 
expansion of urban areas and an increase in peri-urban and rural residential 
development. Changes in land-use can also have a significant effect on the quality and 
quantity of water derived from an area, as part of overall water supply. 

With the increase in peri-urban and rural residential development, there is typically an 
increase in the number of ‘farm dams’ constructed to provide stock and domestic water 
supply. Farm dams capture rainfall and runoff. Depending on the number and density 
of dams in a catchment, they can reduce the runoff to water supply rivers and storages.  
 

 

 

Figure 7. Distribution of the ACT consumption by category (Printed with permission from 
ACTEW Corporation) 

 

Water restrictions 
introduced in 

November 2002

 

Figure 8. A shift in water demand after water restrictions were imposed in November 
2002 
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Schreider et al. (2002) suggested that farm dams have very small effects (<5%) on 
yield. Also, Starr (2006) suggested that, in future, it is unlikely that the combination of 
circumstances will recur that has produced farm dams in the Googong catchment. 
Therefore we chose not to include changes in the numbers of farm dams as part of the 
modelled management adaptation alternatives.  

Increasing peri-urban development and settlement also increases the use of On Site 
Systems of Sewage Management (OSSMs — which are individual property’s 
processing facilities such as septic tanks or aerated water treatment systems, plus an 
effluent disposal area). In a review of existing water quality in the western Palerang 
area it was concluded that OSSMs represented the main risk to water quality for the 
region (Holloway, Masterman-Smith & Plumb 2011). Further risks were posed by road 
crossings over waterways, and erosion of gullies and streambanks.  

The water quality attributes of greatest concern were identified as suspended solids 
(turbidity), followed by nitrate, pathogens, phosphate and other chemicals. There is 
little information available for the Upper Murrumbidgee catchment on projected 
population increases that would result in an increase in the numbers of OSSMs and 
thus the magnitude of the future risks for the region. Given that Starr (2006) suggests 
that it is unlikely that the combination of circumstances will recur that have produced 
farm dams in Googong catchment, we have considered that it is also unlikely that there 
will be a similar expansion in the number of OSSMs, and we chose not to include 
changes in the number of OSSMs in the modelled management adaptation 
alternatives. 

2.3.3 Adaptation policies 

The Intergovernmental Panel on Climate Change (IPCC 2001) defines adaptation as 
an ‘‘adjustment in ecological, social, or economic systems in response to actual or 
expected climatic stimuli and their effects or impacts”.   

In this project, we focused on adaptation policies. Adaptation policies are context-
specific and subject to the legislative and regulatory framework of the water system 
(summarised in Table 3 for the case study catchment). They emerged from the pilot 
study (scenario definition stage of the project) as a key dimension or set of driving 
factors that could affect water quality and ecological responses with future climate 
change.  

The discussion below indicates matters the team considered in devising four 
combinations of ‘management adaptation alternatives’ (or ‘conditions’), for testing in 
this project (listed in Figure 10).  

To identify adaptation decisions, we reviewed available literature (e.g. policy/regulatory 
documents, peer-reviewed publications, reports) and conducted a series of meetings 
with the project stakeholders. Based on the findings, we grouped policies into three 
categories (see Figure 9):  

• supply management, 

• demand management (including approaches for conservation and source 
substitution), 

• water quality and aquatic systems protection. 
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Present and future adaptation policiesPresent and future adaptation policies

Water quality and aquatic species 
protection (O)

Water quality and aquatic species 
protection (O)Supply management (O)Supply management (O)

Water conservationWater conservation

Enlarge the 
capacity of Cotter 

(SM1)

Enlarge the 
capacity of Cotter 

(SM1)

MBG to Googong 
(SM2)

MBG to Googong 
(SM2)

Tantangara (SM3)Tantangara (SM3)

Demand management (A)Demand management (A)

Potable

Non-potableNon-potable

Water Purification Plant 
(SS1)

Stormwater harvesting (SS2)Stormwater harvesting (SS2)

Groundwater/MAR (SS3)Groundwater/MAR (SS3)

Environmental flows (AP2)Environmental flows (AP2)

Erosion
and sediment control

measures (AP3)

Erosion
and sediment control

measures (AP3)

Fish management 
strategies (AP4)

Fish management 
strategies (AP4)

Treated effluent (SS4)Treated effluent (SS4)

On-site 
household scale 

treatment

On-site 
household scale 

treatment

Catchment scale 
treatment

Catchment scale 
treatment

Tennent dam 
(SM4)

Water sensitive 
urban design 

(DM1) 

Water sensitive 
urban design 

(DM1) 

Permanent Water 
Conservation 

measures (DM2)

Permanent Water 
Conservation 

measures (DM2)

Queanbeyan 
Water 

conservation 
Credits (DM3)

Queanbeyan 
Water 

conservation 
Credits (DM3)

Quality of effluent 
discharge (AP1)

Quality of effluent 
discharge (AP1)

Substance removal (e.g. 
MBR, BNR)

Substance removal (e.g. 
MBR, BNR)

Temporary water 
restrictions (DM4)
Temporary water 
restrictions (DM4)

Note: Grey boxes show options that are NOT selected for assessment
          (A) to be assessed at Aggregate level
          (O) to be assessed at Option level

Note: Grey boxes show options that are NOT selected for assessment
          (A) to be assessed at Aggregate level
          (O) to be assessed at Option level

Salt reduction 
technology

Salt reduction 
technology

Source substitution (A)Source substitution (A)

Cotter e-flowsCotter e-flows

Googong e-flowsGoogong e-flows

Tantangara e-flowsTantangara e-flows

 

Figure 9. Categories of present & future adaptation policies
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(i) Supply management 
Supply management refers to the installation of infrastructure (e.g. dams, pipelines, 
pumping stations) to acquire water from new sources (e.g. build a new dam) or extend 
the capacity of existing sources (e.g. enlarge the capacity of a dam). Thanks to the 
expansive water supply infrastructure in the Upper Murrumbidgee catchment, the 
quality of the water supply to ACT and the region has been sufficiently high since 1967, 
with the exception of intermittent water supply shortage (Dovers et al. 2008). 

After the drought of 2002–10, along with the looming impacts of climate change and a 
growing population, ACTEW pursued a number of new options for water supply 
(summarised in Appendix B, Table B2), including: 

• enlarge the Cotter Dam (ECD) capacity from 4 GL to 78 GL, 

• pump water from the Murrumbidgee River to Googong Dam (M2G), 

• purchase water from NSW irrigators to be delivered from Tantangara Reservoir, 

• construct the Tennent Dam. 

Now, in 2013, ECD and M2G are already being implemented, and the purchase of 
water from NSW irrigators (the Tantangara option) is expected to begin by 2014. (It is 
included in our set of ‘management adaptation alternatives’ in Figure 10.) At present, 
Tennent Dam is rated “low” on the water planning agenda because of its high 
economic, social, and environmental implications. Hence, Tennent was not considered 
for assessment in this study.  

(ii) Demand management:  water conservation and source substitution  
Since the drought and bushfire experience of the last few years, the ACT Government 
has set targets of 12% reduction in per capita consumption by 2013 and 25% 
reductions by 2023 (ACT Government 2004). To achieve the target, a number of 
policies and programs have been set up, such as water sensitive urban design for 
stormwater management, and permanent conservation measures for demand 
management. In Appendix B, Table B3 is a summary of water conservation programs. 

Source substitution (Appendix B, Table B4) includes options to supply demand for 
potable or non-potable water from alternative sources such as rainwater tanks or grey 
water capture. ACTEW has explored the option of treating sewage water to produce 
high quality drinking water (rigorously via a Water Purification Plant (WPP)). There are 
many factors that will determine the viability of implementing this option, such as high 
energy and economic costs and poor community acceptance of the idea of drinking 
treated water. So, at the present time, a WPP is seen as a “ready card” in case of 
dramatic change in circumstances (e.g. severe reductions in catchment yields). 

There are two levels of non-potable water: household scale (e.g. rainfall tanks, shower 
buckets), and catchment scale. At a catchment scale, the current sewerage network in 
Canberra includes the Lower Molonglo Water Quality Control Centre (LWMQCC), in 
west Belconnen, which is the main sewage treatment plant for Canberra and the 
surrounding area. The Fyshwick Sewage Treatment Plant (FTP) stores industrial and 
domestic sewage before its controlled release into the sewer main which flows either to 
the LMWQCC or to the North Canberra Water Reuse Scheme.  
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We considered two approaches for constructing demand management scenarios. In 
the bottom-up approach, water saving per option would be used to estimate total water 
saving for a set of options. The alternative approach would be to identify whether 
reduction targets have been met or not, regardless of “how” they are achieved. The 
bottom-up approach allows for analysing and comparing the costs and benefits (socio-
economic) for a suite of options. Although this was not relevant to the aim of this 
project, we modelled demand management as achieving (or not achieving) a target. 

ACTEW’s baseline scenario postulates that demand reduction targets will be met. The 
underpinning assumption is that there has been a permanent shift towards water-wise 
behavioural patterns. This assumption overlooks the changes in the factors that 
influence decision making, and therefore, their impacts on water use patterns (e.g. 
perceptions of climate change and weather conditions). Therefore, in this project we 
challenged that assumption and examined “what-if” demand reduction target are not 
met. 

(iii) Water quality and aquatic ecosystems protection 
(a) Quality of effluent discharge 
The LMWQCC discharges treated effluent to the Molonglo River; after a very short 
distance the Molonglo River enters the Murrumbidgee River at a flow rate of about 29 
GL/year (or 80 ML/day). The discharged flow from the treatment plant has crucial 
environmental, social and economic value, because: 

1. it significantly contributes to flows in the Murrumbidgee River, especially during 
drought periods (about 15% of river flow during 2002–08); 

2. it contributes to flows in the River Murray and the Murray-Darling Basin, and 
therefore to water use downstream (for irrigation and urban supply); 

3. its water quality contributes to the quality of water in the Murrumbidgee River and 
River Murray, and therefore affects dependent systems (both ecological and 
agricultural); 

4. it constitutes a component of the ACT’s net water use under federal legislation and 
agreements.  

The Canberra Sewerage Strategy 2010–2060 (ActewAGL 2011) has explored a range 
of future options for upgrading the sewerage system at the Fyshwick treatment plant 
and LMWQCC. Options were identified and assessed (qualitatively) based on a range 
of criteria (economic, social, and environmental). For this project’s scenarios we 
examined, selected, and grouped options that were most relevant for their impacts on 
water quality and ecosystems. For this purpose, we grouped options (according to their 
function) into:  

• technologies for substance removal, such as Membrane bioreactor and 
Biological Nutrient Removal, 

• technologies to reduce salt, such as reverse osmosis. 

(iv) Environmental flows/releases 

River flow is a driver that limits the distribution and abundance of river species and 
regulates the ecological integrity of flowing water systems (Poff et al. 1997). 
Infrastructure such as dams or weirs affects the natural flow of water downstream. 
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Water released from reservoirs to flow downstream as ‘environmental flows’ helps to 
restore the ecological processes and biodiversity of water dependent ecosystems.  

Within the ACT, the Environmental Flow Guidelines (ACT Government 2006) 
established by the Water Resources Act 1998, define volumes and timing of 
environmental flows, and set abstraction limits for streams, rivers, lakes and aquifers. 
Environmental flows are adapted to the type of water system (natural, water supply, 
modified, or created) and for special situations such as drought periods. For instance 
environmental flows specified for water supply catchments (the Cotter and Googong 
catchments) specify a minimal requirement for healthy aquatic ecosystems to ensure 
that both water supply and conservation objectives can be met. Conversely, 
environmental flows in natural ecosystems, such as those within Namadgi National 
Park and Tidbinbilla Nature Reserve, are designed to protect the base flow 4 and also 
protect most of the volume of flood flows that are necessary to maintain the channel 
form5 (ACT Government 2006).  

Within the scenario planning for this project we considered that there were three 
regulated ‘sub’ systems in the Upper Murrumbidgee catchment for which environmental 
flows were relevant: Tantangara, Cotter and Googong Reservoirs. 

Tantangara: Releases from Tantangara are regulated by the Water Administration 
Ministerial Corporation (WAMC) by advice of the Snowy Scientific Committee (SSC) 
under the Snowy Water license. In 2011, the SSC made environmental flow 
recommendations for release from Tantangara Dam to the Upper Murrumbidgee River. 
Environmental flow recommendations for the Murrumbidgee River between Tantangara 
Dam and the ACT border were established by an Expert Panel (Pendlebury et al. 1997) 
and reviewed by the SSC (2010).  

Generic ecological objectives for the environmental flows are defined by the Snowy 
Water Inquiry Outcomes Implementation Deed (SWIOID 2002, Annexure Two), as:  

a) to protect endangered / threatened species,  

b) to maintain natural habitats, and  

c) to maintain wilderness and national parks values.  

The SSC has advised on environmental water releases recently to support breeding of 
Macquarie Perch.  

Cotter River and ECD: Dams on the Cotter River are classified as water supply 
ecosystems (ACT Government 2006) and these storages are managed to ensure that 
there is adequate supply of water for consumption while maintaining the ecological 
health of the rivers. The ecological objectives for the Cotter River include maintaining:  

a) populations of Macquarie Perch between Bendora Dam and Cotter Dam;  

b) populations of Two-spined Blackfish between Corin Dam and Cotter Dam; and  

c) healthy ecosystems in the Cotter River catchment between Corin Dam and Cotter 
Dam.  

                                                           
4 Base flow: the minimal volume of water that the stream needs to support the fish, plants and insects 
and protect water quality. 
5 Channel maintenance flows ensure the river maintains its natural channel form. 
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Googong Dam: The Environmental Flow Guidelines (ACT Government 2006) specify 
the environmental flows in NSW immediately downstream of Googong Dam. These 
flows are under the direct control of the ACT through regulation of releases. At the time 
of development of the Environmental Flows Guidelines (ACT Government 2006) NSW 
had not established environmental flow requirements in streams upstream and 
downstream of the ACT. For releases from Googong Dam, environmental flow 
requirements for water supply ecosystems are applied. The ecological objective below 
Googong Dam is to maintain healthy aquatic ecosystems (a base flow below Googong 
of 10 ML/day or inflow, whichever is less, and 4 ML/day during drought periods). 

(v) Environmental water quality 

Water in the deeper layers of stratified reservoirs can have a much lower temperature 
and oxygen content than surface waters. If released as an environmental flow, this 
‘cold water’ may severely disrupt spawning, migrations, and reproductive activity of 
animals downstream. While most of the focus on releasing deeper water is on the cold 
water pollution it creates (Preece 2004), deeper water may also contain higher 
concentrations of metals and nutrients than the surface waters.  

Corin, Bendora, Cotter, Googong and Tantagara Dams all have the capacity to release 
water from a variety of depths (through multi-level off-take towers) and so inflow and 
release water temperature can be matched. However, Scrivener Dam which contains 
Lake Burley Griffin on the Molonglo River, which is managed by the Commonwealth, 
does not have a multi-level off-take (ACT_Government 2006). In the case of the Cotter 
River, water releases from all the reservoirs can be sourced from multi-level off-take 
towers to minimise potential impacts of cold water pollution on the aquatic ecosystem, 
particularly on native species as Macquarie Perch (ACTEW 2010). 

2.4 Output scenarios 

Based on information in the discussion above, for the case study catchment, the team: 

(i) defined a range of plausible scenarios for future climate and stream flow conditions,  

(ii) combined those scenarios with several scenarios of future water management and 
water use situations.  

For all four alternatives we assumed that the region’s population will go on expanding 
steadily, and that the region’s long history of bushfires will continue. With those two 
assumptions constant, we varied (as ‘do’ or ‘do not’)  

(i) control of human water demand in the ACT, 

(ii) supply of water available, for humans, and 

(iii) boosts to the flow regime, for river ecosystems. 

The result was the proposed four plausible (flow-driven) ‘conditions’ or ‘management 
adaptation alternatives’, shown in Figure 10. 

The four ‘management adaptation alternatives’  in Figure 10 could be paraphrased as: 

C1, Manage in the future within the currently available limits of water supply; 

C2, Maximise the future water available for both humans and the flow regime; 



 Predicting water quality and ecological responses 35 
 

C3, Moderately increase the future water available to meet human demand, but do not 
adjust the flow regime; 

C4, Manage within the currently available limits of water supply for humans, but boost 

the flow regime. 
 
At the next stage of the project the team quantitatively examined how these 
alternatives would affect stream flow in the 30 climate scenarios we had devised (see 
Appendix Table C1). Section 6 illustrates how we assessed their impacts on water 
quality and aquatic protection options. 

 

 

 

Figure 10.  Four plausible (flow-driven) management adaptation alternatives to be 
examined under a range of climate scenarios.  
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3. SCENARIO ANALYSIS 

This section describes the methods used to predict the flow regime changes within the 
catchment, including the selection of the climate scenarios used during the remainder of 
the study. The predicted flow regime changes are analysed using hydro-ecological 
indicators of change and compared with the effects of river regulation. The linking of flow 
regime changes to water quality is described, including the water quality modelling 
approaches. The section concludes with predictions of exceedance probabilities for water 
quality attributes designed to protect ecological communities. 

3.1 Flow modelling  

The first step in linking the climate attributes to water quality and ecological response 
models is to generate flow regimes for each of the climate and management scenarios 
of interest. Flow regimes were generated for all possible climate scenarios and those 
displaying minor, moderate and major changes in ecologically relevant attributes of the 
flow regimes were selected for further analysis.  

3.1.1 Climate and “natural” flow data 

As described in Section 2, historical climate data and future projections were obtained 
from the SEACI database. Historical daily rainfall and potential evapo-transpiration 
(PET) data extend from 1895 to 2008. We used climate projections that represent 
outputs from 15 Global Climate Models (GCMs) for the A1B emission scenario at 1oC 
and 2oC increases in atmospheric temperature, which yielded a total of 30 scenarios 
(see Appendix Table C1). SEACI uses an empirical daily scaling method to downscale 
climate predictors from catchment scale rainfall and PET. The scaling method 
considers changes in the future mean seasonal rainfall, PET and daily rainfall 
distribution. 

To generate runoff time series we used the lumped conceptual daily rainfall–runoff 
model, SIMHYD, with a Muskingum routing, to estimate daily runoff as gridded data at 
(~5 km × 5 km) resolution. The model was calibrated against 1975–2006 daily stream 
flow data (Chiew et al. 2009). 

We aggregated the SEACI flow estimates for all cells within each catchment. This gave 
an estimate of the input to flows at each selected site in the region. To convert these 
inputs to flows, we aggregated the input flows to each selected site. Comparison of the 
aggregated flow estimates with observed flows at gauged sites showed no significant 
pattern, indicating that there was no need for the addition of a routing model. This 
implies that at the scales being considered in this study, the routing of water 
represented in the SEACI flow estimates (5 km x 5 km grid cell) dominates over the 
routing through the Upper Murrumbidgee catchment. 

Flow estimates were produced for all sites under “natural” conditions (i.e. assuming no 
dams or regulation were present in the catchment). Further, groundwater–surface-
water interactions add complexity to the routing of flows through transmission losses 
and the addition of baseflow to the river. This can lead to an error in the volume of 
flows as well as the temporal distribution of flows. To estimate the uncertainty in the 
flows at ungauged locations we compared the resulting flow values with observed flows 
at gauged sites to assess the accuracy of the modelled flows.  
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The high correlations between observed and modelled flows (e.g. Figure 11) indicate 
that for most catchments, the SEACI gridded data reproduce the temporal pattern of 
flow at the outlet of the study catchments. In the case of gauge 410033, deconvolution 
(Figure 12) shows that a lag-route routing method was able to capture the difference 
between the observed and aggregated SEACI flow values, using a time constant of 0.7 
days, though there was considerable uncertainty in this value; the time constant 
obtained for gauge 410050 (about 20 km downstream of gauge 410033) was 
significantly higher, at 1.2 days. The high residuals at negative lags indicate the 
presence of timing errors in the SEACI modelled flows, most likely a result of errors in 
the input rainfall data. 

 

Figure 11.  Cross correlation analysis for gauge 410033 

Figure 12. Estimate of routing impulse response function for gauge 410033 
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There was a significant error in the magnitude of the flow at the gauged sites, with a 
mean over-estimation by a factor of 2 (median multiplicative factor = 1.43), and a 
standard deviation of 1.87 (error in mean = 0.62). This was not surprising, as the 
SEACI modelled flows are regionally calibrated, and not specifically calibrated to the 
gauges assessed. There was an implication that flows tend to be over-estimated 
across these gauged sites (with respect to the observed flows, which will also have 
associated uncertainty). However, generalising these results to the entire region 
studied is problematic. The indication is that the expected uncertainty (1σ) in the 
magnitude of flows will be a factor of 2 (actual flow is expected to be between half and 
double the SEACI modelled values). 

3.1.2 Climate and regulated flow data 
In this project, we used outputs from the ACT REALM model supplied by ACTEW 
Water to provide flow data for the regulated rivers. REsource ALlocation Model 
(REALM) is a simulation-based generalised framework used to represent water supply 
(e.g. pipes, reservoirs) and demand (e.g. urban centres, irrigation areas) systems. 
REALM is used to design and test the effects of various supply and demand 
management options, such as building new supply infrastructure and/or water 
efficiency measures, and operating rules. 

The ACT REALM model includes the four reservoirs that supply water to the ACT: 
enlarged Cotter (78 GL), Bendora (11.5 GL), Corin (71 GL) on the Cotter River, and 
Googong (121 GL) on the Queanbeyan River. It also includes a pipeline to extract and 
transport water from the Murrumbidgee River to Googong Dam, plus the ability to 
extract and treat Murrumbidgee water at Stromlo Treatment Plant before it is supplied 
to Canberra. At each simulation time step REALM calculates Canberra’s and 
Queanbeyan’s urban potable water demand, inflows (e.g. catchment runoff), and 
outflows (e.g. spills, environmental flows). 

3.1.3 Climate scenario selection 

The selection of climate scenarios was directed at those most likely to capture the 
range of possible future changes for 2030. Our initial focus was on those scenarios 
likely to generate the most extreme changes and potentially produce adverse water 
quality and ecological effects, and as a consequence scenarios for 2070 were also 
considered. To select the scenarios we used a suite of ecologically relevant hydrologic 
parameters from the Index of Hydrological Alteration (Richter et al. 1996) to determine 
the magnitude of the flow regime changes.  

The Index of Hydrological Alteration (IHA) (Richter et al. 1996) is commonly used 
across the northern hemisphere to assess the eco-hydrological effects of alteration in 
flow regimes caused by regulation (e.g. dams, diversions) and climate conditions (Suen 
2010). It comprises 32 hydrologic parameters which characterise the intra- and inter-
annual variation in flows, according to five key biologically-relevant components of flow 
regimes (Richter et al. 1996; Table 5). 

The full suite of IHA parameters was calculated for all sites for all 30 climate scenarios. 
Non-parametric inter-annual metrics, including median, 25th percentile, and 75th 
percentile, were calculated for each of the IHA parameters. Using the “natural” or “pre-
dam” data set as a baseline scenario, climate scenarios were assessed in terms of the 
degree of alteration by calculating the absolute percentage change of these inter-
annual metrics.   



 Predicting water quality and ecological responses 39 
 

Table 5. Indicators of Hydrological Alteration (Richter et al. 1996, 1997) 

IHA Statistics 
Group 

Regime 
characteristics 

Parameters Ecological 
relevance  
(Black et al. 2005) 

Group 1.   
Magnitude of 
monthly water 
conditions 

Magnitude  
Timing 

Mean value for each 
calendar month 

Habitat availability 

Group 2. 
Magnitude and 
duration of annual 
extreme water 
conditions 

Magnitude  
Duration 

Annual Minima:   
1,3,7, 30, 90 day means. 
Annual Maxima:  
1,3,7,30, 90 day means. 

Structuring river 
channel morphology 
and physical habitat 
conditions 

Group 3.  
Timing of annual 
extreme water 
conditions 

Timing Date of each annual  
1-day maximum. 
Date of each annual  
1-day minimum. 

Compatibility with life 
cycles 

Group 4.  
Frequency and 
duration of high 
and low pulses 

Magnitude 
Frequency 
Duration 

Number of high pulses each 
year. 
Number of low pulses each 
year. 
Mean duration of high 
pulses. 
Mean duration of low pulses. 

Frequency and 
duration of anaerobic 
stress for plants 

Group 5.  
Rate and 
frequency of water 
condition changes 

Frequency 
Rate of change 

Means of all positive 
differences between 
consecutive daily means. 
Means of all negative 
differences between 
consecutive daily values. 
Number of rises. 
Number of falls. 

Entrapment on 
islands and 
floodplains 

The degree of alteration was determined using the following classes (Richter et al. 
1998): no or minor (<30%), moderate (30%–70%), and major (>70%). For the Group 3 
metrics, the alteration was classed slightly differently because the indicator was 
measured in term of absolute difference in days; then the classes were: no or minor 
change (<30 days) or major change (>30days).  

Climate scenarios were ranked and compared in terms of the number of parameters for 
which there was minor to significant change (assuming that parameters are equally 
weighted) (full analysis is provided in Appendix C). As a result, six climate scenarios 
were identified for further analysis. These selected scenarios encompass those which 
represent major, moderate and minor alterations to the stream flow, where _1 and _2 
refer to 1oC or 2oC: 

Major change: CSIRO_1 and CSIRO_2 

Moderate change: INMCM_1 and INMCM_2 

Minor change: NCAR_PCM_1 and NCAR_PCM_2. 
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3.2 Prediction of flow regime changes for the defined  
 climate scenarios 

The flow data generated for the climate enabled a comparison of the effects of river 
regulation and projected climate change on ecologically relevant attributes of the flow 
regimes. We used two approaches for measuring the effects of climate on the flow 
regimes, to assess the severity and extent of human alteration to flow regimes 
compared with those that may be caused by plausible climate conditions:   

1. the Index of Hydrological Alteration (IHA, Richter et al. 1996), 

2. Flow Stress Indicators (FSI) (SKM 2005). 

These approaches and the results obtained are described in detail in the following 
sections. Supporting results and analysis are in Appendices D, E and F. 

3.2.1 IHA analysis 

(i) Parameters selection 

Some IHA parameters may be highly correlated and have the potential to bias the end 
result. Non parametric Kendall’s Tau correlation (Kendall 1938) was used to exclude 
correlated parameters (>0.8) while retaining those that showed the highest degree of 
alteration.  

To select the parameters that represent the highest degree of alteration, we gave each 
parameter a score using the following rule: 0 (if minor change, <30%), 1 (if moderate 
change, 30%–70%), and 2 (if major change, >70%). For Group 3 the rules were: 0 (if 
minor change, <30 days), and 1 (if major change, >30 days).The maximum scores for 
each group across all six selected climate scenarios are shown in Table 6.  

We selected parameters that scored 50% or more of the maximum available points 
across all regions. The scoring selection method was combined with the Kendall 
correlation analysis using step-wise selection (full analysis is in Appendix D) in order to 
make the final selection of an indicator which exhibited significant alteration along with 
minimal correlation: 

 Group 1: Monthly mean flows in February and March, 

 Group 2: Annual 30-day minima, 

 Group 4: Frequency of high and low pulses, and duration of low pulses. 
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To facilitate comparison across sites, the selected parameters were combined into one 
indicator using Euclidean Distance (NWC 2012),  

where  
IHA.EDj  is the combined score for the IHA parameters at site j, 
Ii  is the absolute percentage change in a given IHA parameter i,  
n  is the number of parameters, 
m  is the number of sites. 

Table 6. Maximum points available for each group, across all selected climate scenarios, 
for the purposes of indicator selection 

Group  Metrics of interest Maximum points 
1 & 2  Min, Q25, Med, Q75, Max 2 points * 6 scenarios * 5 metrics = 60 points 
3 Med 1 point * 6 scenarios * 1 metric = 6 points 
4 & 5 Q25, Med, Q75 2 points * 6 scenarios * 3 metrics = 36 points 

This provides a measure of similarity in hydrological conditions at a site under a given scenario, 
and conditions at the same site under the ‘natural’ conditions. An IHA-ED takes value between 
0 and 1, where 

IHA.EDj of value close to 0 means that the hydro-ecological conditions at this particular site are 
similar or closely similar to natural conditions (i.e. minor alteration); 

IHA.EDj  of value close to 0.5 means that the hydro-ecological conditions at this particular site 
are moderately similar to natural conditions (i.e. moderate alteration); 

IHA.EDj of value close to 1 means that that the hydro-ecological conditions at this particular site 
are significantly divergent from natural conditions (i.e. major alteration). 

Throughout the analysis, the individual site results were aggregated to region level by 
averaging, using the list of stations in Table 7. These average results were then used 
to formulate the final results shown throughout Appendices E to F. 

Table 7.  Flow stations for each region used in the analysis of the flow regime changes 

Region Station numbers 
Bredbo 76 and 42 
Cooma 81 and 2262 
Cotter 700, 2234, 994, 702 and 701 
Ginninderra 9064 and 991 
Goodradigdee 2136 and 2129 
Gudgenby 995 and 996 
Lower Molonglo 2191 
Mid Molonglo 999, 2188, 997, 998 and 987 
Mid Murrumbidgee 50, 141, 704, 705, 777, 990, 993, 2048, 2079 and 9151 
Numeralla 62 and 2154 
Paddys 2010 and 9015 
Queanbeyan 703, 2106, 2235 and 2286 
Tuggeranong 9058 
Upper Molonglo 208 and 2242 
Upper Murrumbidgee 33, 706, 2940 and 9173 
Yass 2298, 2300, 26, 90, 2436 and 85 
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3.2.2 Flow Stress Indicators analysis 

The IHA method and its derivatives (such as the DHRAM, Black et al. 2005) are 
emerging as the most commonly used method for assessing hydrologic alteration 
internationally. However, in Australia, a suite of variance corrected Flow Stress 
Indicators (FSI) are emerging as the preferred method (Davies et al. 2010; SKM 2005; 
Slijkerman, Kaye & Dyer 2007). The selection of a different suite of indicators of 
hydrological change for Australian conditions is in response to the high variability of 
Australian hydrology (Finlayson & McMahon 1988) and the adaptation of Australia’s 
aquatic biota to high variability. For example, it is assumed that extracting 20% of the 
water from a river is likely to have fewer adverse effects on the aquatic biota of a river 
that is naturally highly variable in flows, than in a river that has consistent flows. Thus, 
variance corrected indicators determine if the modified flow conditions fall within the 
range of natural flow conditions in the river. The FSI comprise ten ecologically relevant 
measures of hydrological change (Table 8; full details of the calculations are in 
Appendix I). As with the IHA, to facilitate comparison across sites, the selected 
parameters were combined into one indicator by averaging component indicator 
scores,

where  
HIj is the combined score for the FSI parameters at site j, 
FSI is the FSI parameters, 
n is the number of parameters, 
m is the number of sites. 

Flow Stress Indicators are defined mathematically to values between 0 and 1 
(Appendix I) where 1 represents no change (equivalent to natural) and 0 a complete 
change.   

To facilitate comparisons between the IHA.ED and the FSI scores, the IHA.ED was 
converted to IHA.ED* such that values of 1 indicate no change and a value of 0 equals 
a complete change using the formula  ED* = 1 – IHA.ED .  

3.2.3  Results and findings 

We used the IHA/FSI analysis to compare three sets of data to the “natural” conditions 
within each region: 

for all regions, the flow times series generated from the six selected climate scenarios: 
CSIRO_1, CSIRO_2, INMCM_1, INMCM_2, NCAR_PCM_1, and NCAR_PCM_2; 

for regulated sites, the ‘post-dam’ or regulated conditions assuming that dams are in 
place and they stop the flow from going downstream;  

for regulated sites, the combined impacts of the six climate scenarios and the four 
management adaptation alternatives defined in Figure 10 (Section 2.4), called C1, 
C2, C3 and C4 (or SM1, SM2, SM3 and SM4). 

 
  



 Predicting water quality and ecological responses 43 
 

Table 8.  Flow Stress Indicators (FSI) (from NRMSouth 2009; SKM 2005) 

Compon
ent 
indicator 

Description Specific ecological relevance 

Mean 
annual 
flow 

The change in overall 
volume of water carried 
by a waterway each year 

No — difficult to link to a specific response 

Flow 
duration  

The change in overall flow 
regime. Considers all 
points of the flow duration 
curve to be of equal 
ecological relevance. 

No — difficult to link to a specific response 

Variation Changes in variability 
(CV)  

Biota respond to changes in water level throughout 
the year 

Seasonal 
amplitude 

Reflects changes in depth 
of flooding and in-stream 
hydraulics. 
Reflects changes to the 
magnitude of flows in ‘low 
flow’ and ‘high flow’ 
periods. 

Changes in water level are drivers of vegetation 
response — influencing community composition, 
structure and zonation patterns. 
Riverine and floodplain productivity responds to 
floods and low flows and the timing of these defines 
the nature of the response. Typically aquatic flora 
and fauna are adapted to the natural patterns of high 
and low flows (e.g. some fish species rely on spring 
floods for breeding). 

Seasonal 
period 

Reflects changes to the 
timing of ‘low flow’ and 
‘high flow’ periods 

Typically aquatic flora and fauna are adapted to the 
natural patterns of high and low flows (e.g. some fish 
species rely on spring floods for breeding). 

High 
flows 

The change in the 
magnitude of high flows. 
Reflects changes to 
maximum depths and 
velocities. 
Reflects changes to 
disturbance events. 

High flows play an important role in sediment 
transport and primary production within a stream. 
 

High flow 
spells 

Changes to flooding 
(magnitude, duration and 
frequency). 
Changes in the number, 
duration and interval of 
‘spells’ (periods that the 
flow is above a threshold 
value),  

Duration and frequency of high flows influences 
plant responses both on the floodplain and in-
stream. 

Low flows Changes to the 
magnitude of low flows. 

Low flows are a natural feature of Australian rivers 
and are considered to be a time of stress for biota. 
Increasing the magnitude of low flows will reduce the 
wetted area and thus potential habitat availability for 
aquatic biota. 

Low flow 
spells 

Changes in the number, 
duration and interval of 
‘spells’ (periods that the 
flow is below a threshold 
value)  

The duration and frequency of low flows indicates 
the amount of time aquatic biota are subject to 
periods of stress through reduced habitat availability 
and potentially poor water quality. 

Zero flow Reflects changes in the 
ephemeral nature of 
streams 

The change to the duration of zero flows will reflect 
changes to the nature of ephemeral streams.  
Related to the degree of drying of the channel 
(longitudinal connection) and thus availability of 
habitat. 
Increasing the duration of zero flows may ultimately 
result in a change from aquatic to terrestrial biota. 
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We structured the analysis around two parts:  

1. using results from the combined indicators of IHA.ED and FSI to identify the 
overall extent of alteration in ecologically relevant hydrological conditions for 
each of the three data sets described above;  

2. using results from the individual IHA and FSI parameters to identify which flow 
components/characteristics are most vulnerable under which scenario. 

We address each of these parts respectively, below.  

(i) Overall extent of alteration 

(a) Regulation and climate impacts 
Distinct differences between the three sets of scenarios outlined above are evident in 
the IHA.ED* and FSI results (Figure 13 and Figure 14). The regulated conditions 
clearly produce a much higher level of hydrological alteration than most of the climate 
scenarios (Figure 13). For unregulated sites, the most severe hydrological alteration 
occurs under the climate scenario CSIRO_2, which shows a level of hydrological 
alteration similar to that resulting from regulation, but with a much narrower range of 
values. The NCAR_PCM scenarios have a less significant impact on the hydrological 
outcome than the other scenario types (Figure 14). 

(b) Management, regulation and climate impacts 
Individual climate and regulation scenarios were compared to the combined scenarios 
which included climate and management adaptation alternatives (Figure 15). The 
combinations of climate change and management alternatives have much greater 
impact on the hydrology across the region, because the IHA.ED* values are much 
lower, and many lie below zero, signifying major hydrological alteration. There is little 
difference between the IHA.ED* results between management alternatives except for 
alternative C3 (Figure 15(c)) which appears to show the most impact, in particular 
under the CSIRO_2 climate condition where the median IHA.ED* value is almost –1.  
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(a) (b) 

Figure 13. IHA.ED* results across (a) each climate condition for the unregulated sites,  (b) 
the regulation conditions and each climate condition for regulated sites. Note: a scenario 
that exhibits no hydrological alteration from the ‘natural’ state will produce an IHA.ED* value of 
1, whilst an IHA.ED* value of zero or less represents major hydrological alteration.  

 

Figure 14. FSI results across (a) each climate condition for the unregulated sites, (b) the 
regulation conditions and each climate condition for regulated sites 
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Figure 15. IHA.ED* results for sites across selected regulated sites, under each of the 
selected climate scenarios for management adaptation alternatives C1 (a), C2 (b), C3 (c) 
and C4 (d).  Adaptation alternatives are described in Section 2.4. 

 

It is clear that population growth and the consequent increase in water use will amplify 
the impact of climate scenarios (i.e. the minor and moderate alteration scenarios now 
show significant changes to hydrology with IHA.ED* values close to, or below, 0;  see 
Figures 13, 15). It is noticeable also that the application of the management 
alternatives along with the climate conditions produces a much wider range of results 
(Figure 15), with wider boxes, and very extended whiskers towards higher levels of 
alteration.  

Results from the FSI analysis (Figure 16) show management alternative C1 exhibits 
the greatest variation in the impact on the hydrological outcome, with HI values ranging 
from around 0.1 to 0.7 for most climate scenarios. There is a significant difference 
between the impacts of each of the management alternatives. However, Figure 16(b, d) 
corresponding to management alternatives C2 and C4 appear to have very similar 
impacts on the hydrological conditions, with narrower ranges and higher median 
values, in particular for the NCAR_PCM climate scenarios, which is around 0.6. It is 
noticeable also that the application of the management alternatives along with the 
climate conditions, in general, produces a much wider range of results with wider 
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boxes, and very extended whiskers towards higher levels of alteration. The exception 
to this finding would be CSIRO_2 for management alternatives C2 and C4. 

 
Figure 16. The FSI data across climate scenarios under each management adaptation 
alternative: (a) C1 (b) C2 (c) C3 (d) C4. 

Cross-climate analysis was conducted across all management and regulated 
conditions to examine plausible impacts under a range of climate scenarios 
(Figure 17). Results show that regulation has a wide range of effects across these 
stations, compared to the impact of each climate scenario, while the management 
adaptation alternatives consistently show much larger levels of alteration than either 
the regulated conditions or each of the climate scenarios. In the CSIRO_2 climate 
scenario, the impacts of the management alternatives appear the greatest, in particular 
at C3. Under the remaining climate scenarios, the median hydrological alteration 
caused by the management alternatives appears to be relatively similar, around an 
IHA.ED* value of 0, representing major alteration. The differences between these 
climate scenarios are in the range of the IHA.ED* values covered; for the NCAR_PCM 
scenarios, the interquartile range of the IHA.ED* values is very narrow, whereas for the 
CSIRO_1 scenario, the interquartile range shown by the management alternatives is 
much wider. Finally, the difference between the impacts of the management 
alternatives appears to be minimal across all climate scenarios. The management 
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alternatives C1 and C3 show slightly higher levels of alteration, with slightly lower 
values of IHA.ED*, but this difference becomes increasingly marginal as we move from 
the CSIRO scenarios through to the NCAR_PCM scenarios.  

Results from the FSI analysis indicate that the CSIRO_2 climate scenario shows the 
greatest impacts when combined with management alternatives, with the lowest 
median FSI.HI values as well as the smallest range of HI values covered (Figure 18).  
Under the other climate scenarios, the median hydrological alteration caused by the 
management alternatives appears to be relatively similar, around a FSI.HI value of 0.5, 
representing major alteration. The differences between these climate scenarios come 
in the range of HI values covered; for the NCAR_PCM scenarios, the interquartile 
range of the HI values is generally wider for these scenarios, relative to the other 
scenarios. Finally, the difference between the impacts of the management alternatives 
appears to be minimal across all climate scenarios. Management alternatives C1 and 
C3 may show slightly higher levels of alteration, with slightly lower values of HI for the 
NCAR_PCM scenarios, but these differences are marginal.  

(ii) Impacts on flow components under climate, regulation and management 
Full analyses of IHA and FSI flow parameters were undertaken under each of the 
climate and regulation scenarios and management alternatives. To cover all possible 
combinations, a large number of plots were produced. We focus here on presenting 
plots for selected key findings. The complete set of plots is in Appendix E.  

Significant changes in IHA parameters occur under the regulation conditions and it is 
evident that all hydrological parameters experience major alteration, with maximum 
percentage changes either around or above 100%. This indicates the considerable flow 
regime changes caused by regulated conditions. More specifically, the frequency of low 
pulses is most significantly altered under regulation conditions, with median percentage 
changes above 100%. The duration of low pulses exhibits a wide range of alteration, 
which is perhaps significantly skewed by the results from the Queanbeyan region. 
Finally, the two-monthly mean flows and annual 30-day minima all show similar levels 
of alteration under regulation. Classed between moderate to major, this alteration 
appears to be around 70%, but skewed upwards towards a maximum up to 100%. 
Across all of the climate scenarios, regulation produces much higher levels of 
hydrological alteration across all the parameters; the relative impacts on different 
parameters vary between the regulation conditions and the climate scenarios.  
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Figure 17. Box-and-whisker plots comparing the IHA.ED* results under regulated 
conditions (Reg) and the four management alternatives (C1–C4), for each climate 
scenario: (a) CSIRO_1, (b) INMCM_1, (c) NCAR_PCM_1, (d) CSIRO_2, (e) INMCM_2 and (f) 
NCAR_PCM_2.  
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Figure 18. Box-and-whisker plots comparing the FSI HI results under regulated 
conditions and the four management alternatives (C1–C4), for each climate scenario: (a) 
CSIRO_1, (b) INMCM_1, (c) NCAR_PCM_1, (d) CSIRO_2, (e) INMCM_2 and (f) 
NCAR_PCM_2.  

In the climate scenarios, the mean monthly flows are often the most affected 
parameter, but under regulation the frequencies of high and low flows are the more 
highly altered flow characteristics. Under all climate conditions, the 30-day minima are 
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relatively low compared with the monthly mean flows; however, under regulation, the 
level of alteration of the 30-day minima is on a par with the monthly mean flows.  

Looking at the climate scenarios individually, it is clear that CSIRO_2 produces the 
most impacted hydrological conditions with major alterations across most of the IHA 
parameters. The level of alteration then decreases under the CSIRO_1 conditions. For 
the INMCM climate conditions, the level of alteration shown is moderate across the 
parameters. Finally, the impacts of the NCAR_PCM scenarios are very minor, and this 
is the reason this scenario was chosen. Compared to the other scenarios, the 
characteristics of the hydrology still behave similarly. In particular, the monthly mean 
flow parameters are the most altered by the climate scenarios, and the 30-day minima 
and duration of low pulses are the least altered.  

Finally the impact of the combined climate scenarios and management alternatives 
was assessed across all climate scenarios. Across all climate conditions, the combined 
management adaptation alternatives produce much greater levels of hydrological 
alteration compared to the regulation conditions or the individual climate scenarios. 
One of the most noticeable changes from the individual scenarios to the combined 
options is that the duration of low flows becomes one of the most impacted parameters.  

For the CSIRO_2 combined scenarios, the frequency and duration of low flows were 
much more significantly affected than any other parameters. In particular management 
alternative C3 produced median percentage change values around 300%. For both 
INMCM scenarios, the 30-day minima results have an extreme maximum range, which 
has been distorted by the Queanbeyan region results.  

For the NCAR_PCM combined scenarios, the combination of the climate scenario and 
the management alternatives increased the alteration impact on the hydrological 
indicators from moderate to major. However, due to the limited impact of the climate 
scenario, the median results for this combination are still less than 100%. The 30-day 
minima results are again skewed, partly by the Queanbeyan results (maximum), but 
the interquartile range is also very wide, and positively skewed.  

The difference between the impacts of the two temperature increases for each pair of 
climate scenarios appears to decrease as the scenarios move from ‘major alteration’, 
i.e. CSIRO, to ‘minor alteration’, i.e. NCAR_PCM. Under the CSIRO conditions, the 
difference in impact between the two scenarios appears significant. Under the 
increased temperature of INMCM_2 (2oC option), compared to INMCM_1 (1oC option), 
the level of hydrological alteration is only increased slightly. Finally, for the  
NCAR_PCM set of climate scenarios, there appears to be very little difference between 
the temperature increases. 

Similar to the IHA results, FSI flow parameters analysis shows the largest impact under 
CSIRO_2, with major alterations across Mean annual flow (MAF), High flow (HF), High 
flow spells (HFS) and Low flow spells (LFS), and moderate alterations across the other 
parameters, with the exception of Proportion of zero flow (PoZ). The level of alteration 
then decreases under the INMCM_2 conditions. For the CSIRO_1 and INMCM_1 
climate conditions, the level of alteration shown is moderate across most parameters. 
Lastly, the impacts of the NCAR_PCM scenarios are again very minor, because of the 
nature of that scenario. All parameters in the NCAR_PCM models are very close to 1 
with very little variation between sites. 
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Across all climate conditions, the combined management adaptation alternatives 
produce greater change to FSI parameters compared to the ‘post-dam’ conditions. One 
of the most noticeable changes from the individual scenarios to the combined options 
is the very low outlier values for the proportion of zero flows, which is from the Upper 
Murrumbidgee site. 

For the CSIRO_1 and CSIRO_2 scenarios, the seasonal amplitude, low flow spells, 
proportion of zero flows and monthly variation parameters have the greatest change.  
The main difference between these two scenarios is that CSIRO_2 has mean annual 
flows equal to 0 in almost all cases, the only exception occurring with management 
alternative C1. For both INMCM scenarios, the mean annual flow, high flow and high 
flow spells have low values across all management options. 

For the NCAR_PCM scenarios, a much greater level of hydrological impact can be 
seen in the parameters, due to the addition of management alternatives on top of the 
more conservative climate scenario. Mean annual flow, high flow and high flow spells 
have low values, similar to the INMCM case, but we also see small low flow spell 
values for management alternative C1 across both NCAR_PCM scenarios. 

As noted in the previous analysis, the difference between the impacts of the two 
temperature increases for each pair of climate scenarios appears to decrease as the 
scenarios move from ‘major alteration’, i.e. CSIRO, to ‘minor alteration’, i.e. 
NCAR_PCM. Moreover, there is no evidence of change between NCAR_PCM_1 and 
NCAR_PCM_2 when looking across the same management option. Under the CSIRO 
conditions however, we see significant differences even across the same management 
options.   

(iii)  Key findings 

These are key findings from the IHA and FSI analyses. 

• Regulated conditions produce much higher levels of hydrological alteration than 
the individual climate scenarios.  

• Combining climate scenarios and management alternatives produces even 
higher levels of hydrological alteration, with median percentage change values 
consistently falling within the ‘major alteration’ classification (>70%), even for 
the ‘minor alteration’ scenarios; NCAR_PCM. Not surprisingly the most 
conservative climate scenario, CSIRO_2, produces the most impacted results 
out of the climate scenarios, and combined scenario conditions C3 (assuming 
high water use) produces more altered hydrological conditions than the other 
scenarios.  

• Under the individual climate scenarios, it is the case that these mean monthly 
flows are the most impacted parameter.  

• Under regulation, the most impacted parameter is shown to be the frequency of 
low pulses. Results suggest that the number of low pulses that occur 
throughout a year will alter significantly under a regulated river system.  

• Across the combined scenarios the duration of low pulses is often the most 
altered parameter, when it had been the least so under other conditions. This 
suggests that the combination of climate scenarios with management 
alternatives will significantly alter the length of time each low pulse lasts for.  
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• For the combined scenarios, the frequency of low pulses will also be 
significantly altered which suggests that throughout the annual cycle there will 
be more low pulses, each existing for longer lengths of time.  

• The full results of the FSI Hydrological Index analysis do not show as clear 
differences between the climate scenarios and management conditions, as 
found in the IHA analysis. Although in general the management alternatives 
have greater impacts on hydrological outcomes, differences are not as 
significant as in the IHA analysis. 

• The hydrological impact of the management alternatives is significant, but the 
change between different management alternatives is relatively minor. The 
CSIRO_2 climate scenario shows the greatest hydrological impact for 
management alternatives, with HI values around 0.45. Under the remaining 
climate scenarios, the median hydrological alteration caused by the 
management alternatives appears to be relatively similar, around an HI value of 
0.55, representing major alteration.  

• Some of the key messages taken from the FSI parameter analysis echo those 
given by the Hydrological Index analysis. 

• The main drivers of low HI in the management options are the mean annual 
flow, high flow and high flow spells parameters. 

• The effect of temperature on the hydrological parameters is amplified for the 
less conservative climate scenarios, such as CSIRO, compared to the more 
conservative climate scenarios, such as NCAR_PCM. 

• CSIRO_2 has mean annual flow values equal to zero, indicating extreme 
hydrological impact in this climate scenario. 

3.2.4 Synthesis 
We found that regulated conditions in the rivers of the Upper Murrumbidgee catchment 
produced much higher levels of hydrological alteration than was projected here with 
any individual climate scenario alone. The effect of climate change on the regulated 
rivers of the catchment was to amplify the degree of hydrological alteration already 
experienced. Testing of the management adaptation alternatives proposed in Section 
2.4 suggests that the high water demand scenario further amplified the effects of 
climate change and existing regulation. This means that adaptation policies will need to 
consider the effects of regulation and consumptive use as a central strategy for 
protecting freshwater ecosystems into the future. 

For unregulated rivers, it is only the most conservative climate scenario (CSIRO), with 
a 2oC temperature rise, which resulted in significant alteration to the hydrological 
conditions of the rivers.   

3.3 Probabilistic water quality 

The second step in linking the climate attributes to water quality and ecological 
response models is to link the future scenarios to water quality responses. We selected 
a probabilistic approach to water quality predictions using Bayesian Networks (BNs) to 
model water quality. We describe below how we developed the water quality models. 

3.3.1 Regionalisation 
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To assist with modelling, we classified the rivers of the Upper Murrumbidgee catchment 
into regions. This regionalisation was carried out based on expert opinion, Bayesian 
analysis and multivariate analyses, as explained below. 

(i) Regionalisation: Expert opinion 
Based on expert opinion, 15 regions were defined based on their dominant land use, 
landscape position, geology and hydrology (including flow management) (Table 9). 

Table 9. Fifteen regions defined in the Upper Murrumbidgee catchment, based on expert 
opinion 

Region Dominant 
Land use 

Landscape 
position 

Geology Hydrology 

Burrinjuck Conservation / 
Dryland 
agricultural 

Mid-slopes Felsic  
Intrusive/Sedimentary 

Regulated 

Bredbo Relatively 
natural 

Upland  Sedimentary/Intrusive Unregulated 

Cooma Dryland 
agricultural 

Upland Mafic  
Volcanic/Felsic  
Volcanic 

Unregulated 

Cotter Conservation Upland Felsic  
Volcanic/Felsic  
Intrusive/Sedimentary 

Regulated 

Ginninderra Intense (urban) 
and dryland 
agricultural 

Mid-slopes Felsic Volcanic Regulated 

Goodradigbee Conservation Upland Felsic Volcanic Unregulated 
Gudgenby Conservation Upland Felsic Intrusive Unregulated 
Mid 
Murrumbidgee 

Dry land 
agricultural 

Mid-slopes Felsic Volcanic Regulated 

Molonglo Agricultural 
/Urban 

Mid-slopes Sedimentary/Felsic 
Volcanic 

Regulated 

Numeralla Relatively 
natural  

Upland Sedimentary/Felsic 
Intrusive 

Unregulated 

Paddys Relatively 
natural / 
Dryland 
Agricultural  

Upland Felsic Intrusive Unregulated 

Queanbeyan Conservation 
/Relatively 
natural  

Upland Sedimentary/Felsic 
Intrusive 

Regulated 

Jerrabomberra Urban Mid-slopes Felsic Volcanic Unregulated 
Upper 
Murrumbidgee  

Conservation / 
Dryland 
agricultural 

Upland Sedimentary Regulated 

Yass Dryland 
agricultural 

Mid-slopes Sedimentary/Felsic 
Volcanic 

Regulated 

(ii) Regionalisation: Bayesian analysis 

The water quality characteristics of the sites within each of the 15 regions were 
assessed using Bayesian Network analysis linking water quality attributes with sites 
and visually assessing probability distributions for each of the sites within a region 
(Figure 19). The advantage of this visual approach for assessing the data was that a 
large proportion of the 40,000 water quality records available could be used in the 
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analysis and missing values at a site did not constrain the analysis. The Bayesian 
analysis showed that:  

• in the Mid Murrumbidgee region, Tuggeranong Creek and Michalago Creek 
sites had very different P and EC values to other sites within the region;  

• sites from the Molonglo region were highly variable, with some of the urban 
sites displaying quite different pH and EC distributions; 

• sites within the Queanbeyan region showed some variability between sites; 

• sites from the Cotter region showed moderate to high variability. 

On the basis of the Bayesian analysis, possible changes to the regionalisation were 
proposed. 

• Significant differences in salinity levels in the Tuggeranong sites and possibly 
Michelago from the rest of the Mid Murrumbidgee sites, suggested these sites 
should be placed into a separate region.  

• The Molonglo region defined by expert opinion needed to be separated into 
three regions, possibly based on location in relation to the Lower Molonglo 
Water Quality Control Centre (LMWQCC) and the confluence with the 
Queanbeyan River.   

Thus the three proposed regions would be: the Upper Molonglo region including all 
sites upstream from the Queanbeyan River confluence; the Mid Molonglo river 
including sites between the Queanbeyan River confluence and upstream of the 
LMWQCC; and the Lower Molonglo sites downstream of the LMWQCC. It is noted that 
this would result in only two water quality sites in the Lower Molonglo region. 

• The Cotter region could be split into the Upper and Lower Cotter, with sites in 
the Lower Cotter including Lees Creek, Blue Range and sites below Cotter 
Dam.  

• The regions of Ginninderra and Jerrabomberra, particularly differences 
observed between sites around Jerrabomberra, could be caused by urban land 
use. The Mid Molonglo region includes a number of other urban creeks and 
Jerrabomberra Creek could be included with those. 

The outcome of this analysis was a total of 19 regions, with the regions listed in Table 9 
augmented by splitting the Molonglo region into three areas (Upper Molonglo, Mid 
Molonglo, Lower Molonglo), splitting the Cotter region into two areas (Upper and Lower 
Cotter), including Michelago as a separate region, and incorporating sites from 
Jerrabomberra Creek into the Mid Molonglo region. 

(iii)  Regionalisation: Multivariate approach 

To verify the regions defined by expert opinion and Bayesian analysis, we examined 
9145 records to look for similarity in water quality between defined regions, using 
cluster analysis in PRIMER Version 6 (Normalised data, group averaging, Euclidean 
distance measure). The full water quality data set contained several gaps and because 
of the inability of multivariate statistical techniques to handle data gaps, all records with 
missing data were removed from the analysis. Total nitrogen, total phosphorus and 
alkalinity were also removed from the analysis, because data was only available at a 
low number of sites and sampling occasions throughout the catchment.  
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Figure 19. Example Bayesian network showing the probability distributions of the water 
quality linked to sites of the Yass sub-catchment.  

 In this example, the water quality probability distribution is shown for list BLK133. A visual 
assessment of the differences in distribution between sites within the region was undertaken by 
selecting each station within a region and observing the changes in data distribution. Raw data 
(prior to cleaning) were used, hence the extremities of the discretisation of data for EC and pH. 

To perform the cluster analysis, water quality measurements for all sites within each 
region were averaged. Significant groupings within the cluster analysis were identified 
with similarity profile analysis (SIMPROF test). Following the initial cluster analysis run, 
it was decided to combine sites from the Michelago region into the Mid-Murrumbidgee 
region, given the close similarity between water quality in the two regions and the small 
data set for the Michelago region.  

Based on water quality data including temperature, electrical conductivity, pH, 
dissolved oxygen and turbidity, there were three significant groups of regions and 
Lower Molonglo grouped separately (Figure 20). The 18 regions used for subsequent 
multivariate analysis are listed in Table 10. 
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Figure 20. Cluster analysis dendrogram of similarities in water quality for defined regions 
of the Upper Murrumbidgee catchment. Red lines denote a significant cluster identified with 
SIMPROF analysis.  
 

Table 10. Regions of the Upper Murrumbidgee catchment tested using multivariate 
analysis 

Group 1 Group 2 Group 3  
Upper Cotter Yass Mid Murrumbidgee Lower Molonglo 
Numeralla Upper Molonglo  Tuggeranong  
Upper Murrumbidgee Bredbo   
Gudgenby Queanbeyan   
Lower Cotter Burrinjuck   
Goodradigbee Cooma   
Paddys Ginninderra   
 Mid Molonglo   

Water quality, land use and geology similarities between regions were analysed using 
the RELATE test in PRIMER Version 6 (Clarke & Warwick 1994; Somerfield & Clarke 
1995). RELATE examines relationships between similarity and distances using the 
Spearmen rank correlation coefficient (Rho). The resemblance matrix based on water 
quality attributes for each region was compared with resemblance matrices based on 
land use and geology for each region. Distance matrices were calculated in all cases 
using the Euclidean Distance. The significance of the correlations was determined by a 
Monte Carlo permutation procedure (999 permutations). The null hypothesis was that 
there was no relationship between the sets of samples, and it was accepted if the 
estimated Rho value was within the permutation distribution of Rho values. 

Land use was defined into categories including conservation and natural environments; 
production from relatively natural environments; production from dryland agriculture 
and plantations; production from irrigated agriculture and plantations; intensive uses; or 
water (see Appendix A). Geology was defined as: felsic volcanic; intrusive felsic; mafic 
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volcanic; sedimentary; or limestone (see Appendix A). Both land use and geology 
categories were defined as percentage area within each region.  

The similarity between defined regions was significantly related to land use (Rho=0.458 
sign.=0.001) and not significantly related to geology (Rho=0.169 sign.=0.097) 
(Figure 21). The lack of a relationship between water quality and geology was 
unexpected, because it has been well documented that geology has a strong influence 
on water quality. Furthermore, land use and geology similarities between regions were 
significantly correlated (Rho = 0.266 sign. = 0.01); therefore, a significant correlation 
between water quality and geology was expected. The absence of relationship 
between water quality and geology may be because the categories used in geology 
were not sufficiently specific to capture geological influences on the water quality, or 
the geology of the regions is sufficiently chemically homogenous that it does not drive 
water quality variation.  

  

Figure 21. The frequency distribution of permutation distribution (based on 999 perms) of 
the Spearman rank correlation coefficient (Rho, RELATE test) between: a) land use and 
water quality (WQ), and b) geology and water quality (WQ). Vertical lines indicate the real 
Rho values.  
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3.3.2 Water quality modelling 

Water quality drivers, processes and outcomes vary spatially, being influenced by a 
complex set of interacting factors. At a landscape scale, both the drivers of water 
quality and the processes that contribute to changes in water quality are well 
understood (Stendera & Johnson 2006). However, the complexity of responses caused 
by interacting factors means that considerable effort is required to model water quality 
outcomes (Heathwaite 2010). A variety of water quality models exist (e.g. INCA, 
Mike11-TRANS and SWAT) and are being applied to investigate the water quality 
response to climate change. Typically they require more data and assumptions than 
are available and warranted (Reckhow 1994) and generally have a high uncertainty 
associated with them (Arhonditsis & Brett. 2004; Reckhow 1999; Wu, Zou & Yu 2006).   

Probabilistic models, such as Bayesian Networks (BNs), offer a way of aggregating 
responses to a set of management actions or environmental conditions; they are being 
increasingly used in risk assessment where the probability of exceeding a threshold is 
determined from a set of input conditions. They have been proposed for modelling 
water quality responses (Reckhow 1999), yet there are few published examples in the 
literature. More common applications of Bayesian Networks are for ecological response 
modeling (Borsuk, Stow & Reckhow 2003) where they incorporate elements of water 
quality modeling. BNs have also been used to assess water quality compliance 
violations within a water treatment environment (Pike 2004).  

Here we used BNs to assess the probability of water quality parameters exceeding 
thresholds designed to protect aquatic ecosystems given plausible changes in climate 
in the Upper Murrumbidgee catchment. 

(i) Approach 

Initial conceptual modeling (Dyer et al. 2011) identified the key water quality attributes 
for aquatic ecosystems in the Upper Murrumbidgee catchment as being temperature, 
dissolved oxygen, pH, salts, nutrients and fine sediment (Figure 22). These parameters 
provided the focus for the water quality modelling.  

Key drivers of water quality were defined as flow, climate, geology, land use and 
landscape characteristics. These provided the focus for the water quality modelling. A 
significant challenge in using BNs for water quality modelling was noted when the initial 
conceptual model was converted to a BN. BNs do not appear to be well suited to the 
integration of spatial information (such as land use and geology) related to a data point; 
either multiple nodes are required to represent each spatial category (e.g. land use) 
leading to possible implausible cases, or a large number of categories are required to 
allow meaningful prediction. This was overcome by defining regions of similar land use, 
geology and landscape position and using the region as a surrogate for spatial 
information. This reduces the capacity of the model to be used to predict the 
consequences of land use changes that may result from climate change, and our focus 
shifted to isolating the flow-driven water quality changes.  
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Figure 22. Conceptual integrated modelling framework (presented in Dyer et al. 2011). 
Key water quality attributes are identified in the upper left hand box of the diagram. Meaning of 
shapes: oval = management policy / uncontrollable driver; rectangle = model component; arrow 
= data flow link; diamond = input parameter. 

Given that we are interested in understanding water quality responses to changes in 
climate and in particular to changes in flow regimes the approach adopted was to start 
with a simple model reflecting the key drivers of ecologically relevant water quality 
parameters in the catchment. Historical data sets were used to generate frequency 
distributions of the measured quantities as well as the duration of periods where 
concentrations are above/below thresholds. These frequency distributions were linked 
to statistics of flow, climate and landscape attributes (including geology, land use and 
land management activities). 
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(a)  Bayes net learning 
In this application of BNs we use statistical correlations to define the relationships 
between nodes; those statistical correlations are defined through a process known as 
Bayes net learning. One of the advantages of the BNs is that conditional probability 
tables of the network can be filled by “learning” (via automated learning) from data. 
Netica software (Norsys 2008) can learn from a file of cases, from cases one-by-one, 
and it can also connect directly with a database, or learn from case files produced in 
Excel. There are three main types of algorithms that Netica can use to learn conditional 
probability tables: counting, expectation-maximisation (EM) and gradient descent.  

In our study, we used the EM-learning method and connected with text file cases. The 
text file contained the historical data for the water quality attributes related to the 
defined regions. Once, the BN learned the distribution of the probabilities of the water 
quality attributes, the nodes were linked to the thresholds nodes and the probabilities of 
above/below water quality guidelines were calculated.  

For model validation (next section), we also applied the EM-learning method to 
produce the new conditional probability tables related to event-based data to test the 
predictions of above/below water quality guidelines based on historical data.  

(b) Model structure 
Initially, the simplest form of Bayesian model was used to define the relationship 
between climate scenario, flow and the landscape context and the water quality 
attributes (Figure 23a). Technical challenges involved in learning the probability 
distributions associated with land use and geology (caused by sites having varying 
percentages of states) meant that alternative structures were considered. Given the 
use of geology, landscape position and land use attributes to define the regions there 
was redundancy in the model and these attributes were removed and region used as a 
surrogate (Figure 23b).  

(c) Historical Water Quality and Flow Data 
Water quality data were sourced from the NSW Government6, the ACT Government 
water quality database, ACTEW water quality database, and data collected by research 
staff at the University of Canberra associated with a variety of research projects. 
Corresponding historical flow data were also sourced from the same agencies. Bayes 
net learning was used to incorporate the frequency distributions into the Bayesian 
model, linking region, flow character, climate scenario and the water quality attributes. 

(d) Flow categories 
Five flow categories were chosen representing key parts of the flow regime considered 
likely to have the greatest influence on water quality and subsequent ecological 
responses. These were defined on the basis of the historical flow regime and relate to 
flow percentiles (Table 11).   

The change in the frequency of flows in each category was used to test the 
consequences of each climate scenario. 

 

                                                           
6 NSW Government water quality data     
<http://waterinfo.nsw.gov.au/water.shtml?ppbm=SURFACE_WATER&rs&3&rskm_url 



 Predicting water quality and ecological responses 62 
 

 

Figure 23. (a) Simplified conceptual model of climate, flow and landscape attribute 
relationships with water quality in the Upper Murrumbidgee River Catchment. Dotted 
lines represent indirect relationships. (b) Conceptual model of the initial Bayesian 
Network model structure. 

(e)  Thresholds 
Thresholds chosen were the trigger values set by agencies to maintain or improve the 
ecological condition of water bodies. For NSW sites, the key water quality indicators 
and (default) trigger values selected from the (ANZECC/ARMCANZ 2000) guidelines 
and specified at <http://www.environment.nsw.gov.au/ieo/Murrumbidgee/maptext-
03.htm#wq01> for aquatic ecosystem protection in upland and lowland rivers in south 
eastern Australia were used (Table 12). The exception to this was dissolved oxygen, 
where the (ANZECC 1992) guideline value corresponding to mg/L was used rather 
than % saturation, because most of the data we had was as mg/L (Table 12). These 
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documents specify a range of trigger values for EC and turbidity for upland and lowland 
rivers and in each case we used the upper value from the range. 

For ACT sites the Environment Protection Regulations SL2005-38 (ACT Government 
2013), which cover a variety of water uses and environmental values for each river 
reach in the ACT, were used for mountain streams, lowland streams and urban 
streams were used. In the ACT guidelines no total nitrogen guideline is specified; 
therefore the ANZECC guideline was used. 

Table 11. Flow categories used in the Bayesian Network 

Flow category Equivalent percentile range (calculated from historical data) 
Very low 0–1 
Low 1–10 
Moderate 11–89 
High 90–99 
Very high 99–100 

 
Table 12. Threshold values used for the water quality modelling 

Water quality attribute  Indicator numerical criteria (trigger values)  
NSW sites  
Total phosphorus  Upland rivers: 20 µg/L 

Lowland rivers: 25 µg/L for rivers flowing to the coast; 50 µg/L for 
rivers in the Murray-Darling Basin 

Total nitrogen Upland rivers: 250 µg/L  
Lowland rivers: 350 µg/L for rivers flowing to the coast; 500 µg/L 
for rivers in the Murray-Darling Basin   

 Turbidity Upland rivers: 2–25 NTU (see supporting information)  
Lowland rivers: 6–50 NTU (see supporting information) 

Salinity (electrical 
conductivity)  

Upland rivers: 30–350 µS/cm 
Lowland rivers: 125–2200 µS/cm 

 Dissolved oxygen Upland rivers: 6 mg/L  
Lowland rivers: 4mg/L 

pH  Upland rivers: 6.5–8.0 
Lowland rivers: 6.5–8.5 

ACT sites  
Total phosphorus Mountain streams:  ≤40 µg/L 

Lowland streams: ≤100 µg/L 
Urban streams: ≤100 µg/L 

Turbidity Mountain streams:  <10 NTU 
Lowland streams: <10 NTU 
Urban streams: <10NTU 

Dissolved oxygen Mountain streams:  ≥6 mg/L 
Lowland streams:  ≥4 mg/L 
Urban streams: ≥6mg/L 

pH Mountain streams:  6.5–9.0 
Lowland streams:  6.5–9.0 
Urban streams: 6.0–9.0 

(ii) Model validation 

Model validation is the process of reviewing and evaluating model performance, i.e. 
checking that predictions made by the model match those that actually occur. This is 
not possible when predicting the future because, by definition, the future is yet to occur 
and one must wait to obtain the data required to validate the models. An alternative is 
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to use a specific event to validate model outputs. In this case, we used water quality 
data from a special environmental flow release from Tantangara Dam in spring 2011 in 
the Upper Murrumbidgee Region as the validation data set (a release of approx. 
1500 ML/day). The validation data set also included measurements before and after a 
flood (approx. 5000 ML/day) that occurred a month following the environmental flow 
release. Both the environmental flow release and flood were within the moderate 
historical flow percentile range. 

The validation data set included data from six sites located downstream of Tantangara 
Dam in the Upper Murrumbidgee Region (Table 13). Electrical conductivity (EC), pH 
and turbidity loggers were deployed at these sites to capture the behaviour the flow 
releases. 

We used the historical data set to learn the probability that the water quality would be 
above/below guideline levels (Table 14). The environmental flow data set was then 
used to produce new conditional probability tables within the BN that were used to test 
the predictions of being above/below guideline levels.  

When the water quality model was populated with the findings from event based 
sampling downstream of Tantangara Dam, the percentage of readings within NSW 
upland river water quality guidelines levels was similar to those predicted by the model 
built using historical data for moderate flows and dissolved oxygen, total phosphorus, 
pH and electrical conductivity (Table 14). However, the environmental flow/flood event 
in the Upper Murrumbidgee River had a greater proportion of turbidity levels above the 
guideline level than was predicted by the model (Table 14). In addition, the actual 
percentage of time that total nitrogen was below (within) the guideline level was higher 
than that predicted by the model (Table 14).  

Based on this analysis we concluded that the water quality model based on historical 
data was a reasonable–good representation of water quality responses within the 
moderate flow range in an upland catchment for dissolved oxygen, total phosphorus, 
pH and electrical conductivity. It was not unexpected following the flow release and 
flood that there would be an increase in turbidity levels. However, the model was not 
able to encompass the total nitrogen response that occurred during the flow events. 

Table 13.  Upper Murrumbidgee River sites downstream of Tantangara Dam used for 
model validation 

Model site 
code 

River Latitude Longitude Data logger deployed 

MUR938 Murrumbidgee -35.834 148.804 Yes 
MUR943 Murrumbidgee -36.1713 149.0245 Yes 
MUR941 Murrumbidgee -36.169 149.0215 No 
MUR940 Murrumbidgee -35.9835 148.8515 No 
MUR939 Murrumbidgee -35.983 148.843 No 
MUR220 Murrumbidgee -35.7988 148.6745 No 
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Table 14. Predicted water quality attribute guideline violations (expressed for moderate 
flow) based on historical data used to build the Bayesian model (columns 2 and 3) and 
the violations from the 2011 environmental flow/flood data in the Upper Murrumbidgee 
Region (columns 4 and 5) 

 Predicted violations Validation data from the 
environmental flow/ flood 

Water quality 
attribute 

 % Outside 
guideline 

% Within 
guideline 

% Outside 
guideline 

% Within 
guideline 

Dissolved oxygen 0.51 99.5 1.28 98.7 
Total nitrogen 69.6 30.4 20.0 80.0 
Total phosphorus 64.5 35.5 62.3 37.7 
Turbidity 2.73 97.3 9.72 90.3 
pH 3.07 96.9 0 100 
Electrical conductivity 2.97 97.0 0 100 

 

3.4 Water quality responses 

The compiled model for the water quality attributes is shown in Figure 24 and the 
beliefs are shown for each node in the form of belief bars. These represent the initial 
frequency distributions for the water quality attributes for the region of Ginninderra (a 
mid-catchment area, dominated by urban land use, used to illustrate the model), 
defined by the historical data set. The threshold nodes indicate the probability that the 
appropriate jurisdictional guidelines were exceeded. In this region, historically, the 
probability of exceeding thresholds is very low (<5%) for pH and total phosphorus 
concentrations; low (5–30%) for dissolved oxygen, total nitrogen concentration and 
electrical conductivity, and moderate (between 30 and 70%) for turbidity. 

For the four climate scenarios tested, most changes in water quality violations 
observed were negligible, particularly for the 1oC scenarios (Table 16) and most 
changes suggest a slight reduction in the probability of violating thresholds. The most 
notable changes occur for total nitrogen concentrations, with a predicted reduction in 
the probability of exceeding the thresholds for all climate scenarios and most regions, 
with up to a 24% reduction in the probability of exceeding the total nitrogen thresholds 
using the 2oC CSIRO projections for the Gudgenby region. Electrical conductivity, pH 
and dissolved oxygen concentration showed very little response to any of the projected 
climate changes.  

Taking into account the differences between regions, some spatial variations in the 
predicted changes were observed (Table 15). The greatest projected changes in water 
quality occurred in the Upper Cotter, Ginninderra, Mid Molonglo and particularly, 
Gundgenby regions (Table 15). 
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Figure 24. Compiled Bayesian Network water quality model. Model results are shown from the Ginninderra region with historical climate conditions. 
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Table 15.  Change in percentage violations for water quality attributes, in seven regions 
of the Upper Murrumbidgee catchment under the four selected climate scenarios.  Bars 
in each cell represent the magnitude and direction of the change. 

 

 
 

Our Bayesian Network modelling indicates that the projected water quality changes 
associated with climate change would be small in the Upper Murrumbidgee catchment. 
In most cases there is negligible change in the probability that the thresholds designed 
for the protection of aquatic ecosystems would be violated, and where changes are 
most notable a decrease in threshold violations is predicted. While many studies 
predict large changes in water quality attributes with changes in climate (e.g. Wilby et 
al. 2006; Tu 2009), there are also predictions of much smaller changes. For example, 
Tong et al. (2012) report changes in mean daily nitrogen concentrations of typically 
<5% for a range of climate scenarios, which is not inconsistent with our predictions. 
Rehana & Mujumdar (2012) also predict small changes in the probability of low 
dissolved oxygen conditions. In addition, note that most published studies represent 
northern hemisphere examples where concentrations of nutrients are an order of 
magnitude greater than in the system reported here.   

Moreover, our results may be biased by the scale at which the models were developed. 
The BN used to model changes in water quality does not account for changes that 
occur at a sub-daily timestep, e.g. changes in storm intensities which occur at small 
scale are predicted to shift with climate change, resulting in changes in the frequency 

CSIRO_1 DO TN TP Turb pH EC
Ginninderra 2% -2% 0% 1% 0% 1%
Goodradigbee 0% -1% 0% 0% 1% 0%
Gudgenby 2% -10% 0% -5% 1% 0%
Numeralla 0% -2% 0% 0% 1% 0%
Yass 0% 0% 0% -2% 0% 0%
Mid-Molonglo 2% 0% 0% -2% 0% 0%
Upper Cotter 1% -5% -3% -4% 0% 0%
CNRM_1 DO TN TP Turb pH EC
Ginninderra 0% -1% 0% 0% 0% 0%
Goodradigbee 0% -1% 0% 0% 0% 0%
Gudgenby 1% -5% 0% -4% 0% 0%
Numeralla 0% -1% 0% 0% 1% 0%
Yass 0% 0% 0% -2% 0% 0%
Mid-Molonglo 0% 0% 0% -1% 0% 0%
Upper Cotter 0% -3% -2% -2% 0% 0%
CSIRO_2 DO TN TP Turb pH EC
Ginninderra 5% -5% -1% 5% 0% 2%
Goodradigbee -1% -1% 0% 0% 3% 0%
Gudgenby 5% -24% -3% -9% 1% 1%
Numeralla 0% -3% 0% -1% 2% 0%
Yass 0% 0% 0% -4% 0% 0%
Mid-Molonglo 6% -1% 0% -4% 0% 0%
Upper Cotter 3% -12% -9% -6% 0% 0%
CNRM_2 DO TN TP Turb pH EC
Ginninderra 1% -2% 0% 1% 0% 1%
Goodradigbee 0% -1% 0% 0% 1% 0%
Gudgenby 2% -12% -1% -6% 1% 0%
Numeralla 0% -2% 0% 0% 1% 0%
Yass 0% 0% 0% -3% 0% 0%
Mid-Molonglo 2% 0% 0% -3% 0% 0%
Upper Cotter 1% -7% -4% -4% 0% 0%
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of peak concentrations of both sediments and nutrients. However, neither the 
hydrological modelling available nor the historical water quality data available have 
sufficient resolution to allow such changes to be adequately predicted.  
Before effort is directed at understanding the sub-daily water quality and hydrological 
behaviour, the ecological effects of very-short-duration high concentrations, or high 
flows, need to be understood to determine if the modelling effort is justified. 
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4. DRIVER SELECTION AND THRESHOLD DEFINITION 

This section describes the methods we used for selecting the predictor variables related 
to the ecological responses (macro invertebrates and fish) and the threshold values for 
those predictors (macro invertebrates).This information was subsequently used to 
structure the integrated Bayesian Network (BN) model and discretise key model nodes. 

4.1 Integrated models for predicting management and climate 
  change impacts — Bayesian Network (BN) models  

The first step towards forming the BNs was to develop conceptual models (also known 
as influence diagrams) that identified the primary inputs, drivers and process variables. 
The influence diagrams were constructed using published literature and expert opinion 
and were used to map interactions between variables known to have significant 
influence on water quality and ecological response (for similar constructions see 
Marcot et al. 2001; Smith et al. 2007). We developed separate influence diagrams to 
investigate the ecological responses of macroinvertebrates (Figure 25) and native fish 
(Figure 26) to changes in water flow and water quality, as predicted to result from 
climate conditions and adaptation policies.  

While the influence diagrams informed the structure of the BNs, our aim was to 
produce BN models that were representative of critical ecosystem characteristics, and 
able to be populated with existing data sets, and computationally simple.  

There are limitations to the size of the networks (approximately 10–12 parent nodes 
per child) that can be developed, which means that BNs are not suited to being used to 
investigate relationships within large and complex model structures. Therefore, we 
used alternative approaches (expert opinion and bottom-up approach using different 
statistical techniques) to investigate relationships and define the final BN models. 
Accordingly we (1) identified critical predictors which could be used to structure a BN 
for selected ecological responses, and (2) quantified thresholds for each of these 
critical predictors.  

In this section we provide a detailed description of the methods we used to select 
predictor variables for macroinvertebrate and fish communities, and, in the case of 
macroinvertebrate community, identify thresholds. To select predictor variables two 
approaches are possible: ‘top-down’ and ‘bottom-up’. The top-down method uses the 
concept of constraint to identify the constraints that are important at each scale; the 
bottom-up approach begins with individual or entity-based measurements and adds 
appropriate constraints to explain the resultant phenomena at broader scales. In the 
bottom-up approach, the objective is to use information that is available at fine scales 
to predict phenomena at broader scales for which usually empirical data are lacking.  

The merits of each approach can be debated, but the choice depends on the question 
being investigated, the data collection at broad scales, etc. We chose a “bottom-up” 
approach. We wanted to provide as comprehensive a picture as possible of what was 
happening in the ecosystem, and that involved considering a large number of variables. 
With Bayesian Networks being limited in the number of parent nodes going to one child 
node, our choice of the bottom-up approach allowed us to reduce the number of 
predictor variables. This approach is also termed ‘informed-empirical’ where data are 
used within the context of a conceptual model to select a subset of driver variables. 
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Figure 25.  Conceptual diagram used to map variables potentially affecting macroinvertebrate communities 
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Figure 26.  Conceptual diagram used to map variables potentially affecting fish communities 
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The bottom-up approach for macroinvertebrates was performed using statistical tools 
(univariate and multivariate), while for fish a combination of expert opinion and 
univariate statistical methods were applied. The ecology and habitat requirements of 
native fish in the Upper Murrumbidgee catchment are much better known than those of 
macroinvertebrates. Therefore, the input of the expert opinion in the fish model was 
very valuable. Given the lack of knowledge of the ecological requirements of 
macroinvertebrates, we empirically estimated the threshold values for each of the 
critical predictor variables. For the native fish community, we applied theoretical values 
for thresholds as selected from published literature, and expert opinion and guidelines. 

4.1.1 Background on thresholds 

Environmental changes (e.g. climate, nutrient, hydrological changes) can cause 
sudden and drastic non-linear shifts in ecosystems, which can have significant 
consequences on biodiversity (Groffman et al. 2006; Scheffer et al. 2001). Several 
terms are used to describe these changes: change point, threshold, shift point regime 
shift, abrupt change, break-point, structural change, tipping point, observational 
inhomogeneity. Here we use only the single term ‘threshold’, defined as “a critical value 
of an environmental driver for which small changes can produce an ecological regime 
shift” (after Anderson et al. 2008).  

Understanding how aquatic communities respond to increasing levels of disturbance, 
and thresholds in particular, is critical for many aspects of river management, including 
assessing stream health, predicting future risks, rehabilitating degraded waterbodies, 
and establishing regulatory criteria (Brenden, Wang & Su 2008). Managers need 
ecological thresholds that help them to design specific actions to avoid crossing or 
passing this critical value for the ecosystem.  

Several attempts to solve this gap have been launched recently (Bryce, Lomnicky & 
Kaufmann 2010; Kail, Arle & Jähnig 2012; Utz, Hilderbrand & Boward 2009). Methods 
for identifying thresholds are relatively new and complex, and little is known about the 
consistency of results between different approaches. With this perspective, the most 
common practice among managers is to use theoretical threshold values provided by 
water quality guidelines such as the ANZECC/ARMCANZ guidelines. This is an 
acceptable solution to the problem if empirical thresholds do not exist. However, these 
theoretical values are often not specific to a particular ecological response (e.g. 
macrophytes, macroinvertebrates, fish), and fail to be useful in a predictive capacity.   

To help address this gap between theoretical and empirical thresholds we investigated 
relationships among an array of predictor variables (land use, geology, habitat and 
landscape characteristics, hydrology and water quality) and the macroinvertebrate 
community in the Upper Murrumbidgee catchment. Particularly,  

1) we compared the threshold values produced using different statistical methods 
(univariate and multivariate);  

2) we compared the threshold values for different types of community responses; and  

3) we used empirical thresholds to develop an integrated Bayesian Network model 
designed to evaluate the effect of different climate and management scenarios in 
different regions of the catchment.  
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4.2 Macroinvertebrates  

4.2.1 Methods 

(i) Ecological responses 

Macroinvertebrate data were acquired from recent and historical monitoring projects 
conducted by the Institute for Applied Ecology (IAE), the ACT Government, ACTEW 
Water and the NSW State Government (Table 16). All samples were collected with 
hand nets (250 µm mesh) from two habitats — riffles and edges — using the 
standardised rapid biological assessment sampling techniques developed for the 
Australian National River Health Program (Davies 1994; Nichols et al. 2000; Parsons & 
Norris 1996; Simpson & Norris 2000). The taxonomic resolution of macroinvertebrate 
identification in the dataset ranged from subfamily to phylum, but our analysis was 
carried out at family level because this was the level of most records. 

The dataset comprised 1871 samples distributed widely across the Upper 
Murrumbidgee catchment (Figure 27). Sampling varied between sites: some had been 
only sampled once or twice while others were sampled at regular intervals and a few 
had been sampled on several occasions but at irregular intervals (see Appendix J for 
frequency distribution of the sampling sites). 

To provide an integrated view of the macroinvertebrate community, we chose various 
attributes (community descriptors) that differ in the type of information they provide and 
their sensitivity to different types of environmental predictors. Three different 
community measures were studied: two aggregate community indicators (i.e. relative 
abundance and O/E scores of thermophobic taxa (those which favour cold water) and 
the macroinvertebrate assemblage (i.e. the array of all families) (see below). 

 
Table 16. Meta-data for macroinvertebrate dataset used in the identification of thresholds 

Attribute Description 

Time period of records 1994–2011 

Number of records 1871 

Number of sites 320 

Number of Families 144 

Mesohabitat types  

— site samples from edge 153 

— site samples from riffle 47 

— site samples from edge and riffle 120 

Main data sources NSW Gauging Stations 

 ACTEWAGL Stations 

 Evan Harrison PhD 

 ACT WQ Database 

 UC-ECR Tantangara Project 
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Figure 27. Map of the Upper Murrumbidgee catchment showing the streams (light blue), 
each region, and the 320 sites where macroinvertebrates were sampled. 

Initially we had considered other attributes in addition to these three selected 
endpoints. The other attributes included: relative abundance of all taxa, EPT richness, 
%EPT, thermophilic taxa richness (i.e. of taxa which favour warm water), rheophilic and 
rheophobic taxa richness (i.e. of taxa favouring stream currents or not), relative 
abundance of rheophilic and rheophobic taxa, and Pielou’s evenness. Some of these 
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responses were discarded because of their weak relationship with the response 
variables (e.g. Pielou’s evenness — data not shown) or because they were highly 
correlated (>0.7) with other responses: e.g. rheophilic taxa richness and taxa relative 
abundance were correlated to thermophobic taxa relative abundance at 0.75 and 0.76 
level, respectively. This first screening allowed us to come up with the three final 
endpoints above mentioned: thermophobic taxa relative abundance and O/E scores, 
and the macroinvertebrate assemblage. 

For this project we selected both aggregate indicators and the whole community to test 
the approaches to modelling and development of thresholds. This was done to allow for 
the limitations of aggregate indicators, which may reduce the whole community to a 
single parameter and mask certain ecological responses (King & Baker 2011). We 
further divided each of the macroinvertebrate ecological responses into either edge or 
riffle communities, because preliminary multivariate analysis showed strong differences 
between the two (Appendix J).  

In total six different ecological responses were assessed:  

(1) O/E scores in riffle,  

(2) O/E score in edge,  

(3) thermophobic taxa relative abundance in edge,  

(4) thermophobic taxa relative abundance in riffle,  

(5) macroinvertebrate assemblage in edge, and  

(6) macroinvertebrate assemblage in riffle.    

(a) O/E scores  
In Australia O/E scores are widely used in the bioassessment of river condition (e.g. 
AUSRIVAS assessments). O/E is an index that compares the observed (O) 
macroinvertebrate richness (family level) at a site, to that expected (E) under reference 
or un-impacted conditions. Observed/Expected scores (O/E scores) are derived from 
the AUSRIVAS predictive model (Coysh et al. 2000; Simpson & Norris 2000). We 
selected O/E scores as an index of macroinvertebrate community health. The 
Freshwater Group at the Institute for Applied Ecology (IAE) provided the O/E scores for 
the sites studied. 

(b) Thermophobic taxa relative abundance  
Knowledge of taxa traits, particularly those affected directly by climate change can be 
used to predict the response of the macroinvertebrate community in an increasing 
temperature scenario. Thermophily or thermal tolerance has been proposed as an 
indicator of susceptibility of freshwater macroinvertebrates to climate change, because 
rising air temperatures are expected to increase stream temperatures to the detriment 
of cold-adapted taxa with narrow thermal tolerances (Chessman 2009, 2012; Tierno de 
Figueroa et al. 2010). 

The thermophily of each family was estimated on a continuous scale as described by 
Chessman (2009). In short, the thermophily estimate was the mean instantaneous 
water temperature associated with samples in which that family was detected, divided 
by the mean water temperature of all samples, ignoring samples for which temperature 
was not recorded Chessman (2009).  
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The thermophily estimate produced results in a continuous score. However, we were 
interested in focusing on the most vulnerable thermophobic species. To establish an 
objective cut-off for this family selection, we gave two local experts the score list and 
distribution plots of the given families along the temperature gradient. We asked the 
experts to select the most thermophobic species. Only those families in which the two 
experts agreed were selected as “thermophobic taxa”. (See Appendix K for thermophily 
score list and distribution plots).  

(c) Macroinvertebrate assemblage 
To compare macroinvertebrate assemblage structure between sites we used the Bray–
Curtis similarity measure based on relative abundance data. In total we used the 
relative abundance of the 144 macroinvertebrate taxa present in the Upper 
Murrumbidgee catchment — which we sometimes term the ‘whole community’.   

(ii) Predictor variables 

An initial array of 140 potential predictor variables which describe different types of 
information were collated. These variables were classified as:  

• water quality,  

• hydrology,  

• habitat,  

• land use,  

• geology,  

• climate, and  

• landscape.  

Data were from various sources including the IAE, ACTEW, ACT Government, NSW 
Government, and BoM among others.  

To reduce the number of predictor variables and minimise redundancy, we removed 
correlated variables from the data set by calculating non-parametric Spearman 
correlations between all predictor variables. If two or more variables were significantly 
correlated at level >0.70 the variable with the most missing values was discarded.  

Following the removal of correlated variables and low frequency variables, a total of 85 
predictor variables for the edge community and 92 for the riffle community remained. 
Appendix L describes these final environmental variables used to model ecological 
responses, including mean and range. 

To avoid statistical constraints because of the high number of predictors in relation to 
the number of records of the ecological responses, we analysed and modelled the 
ecological responses separately for each category of dataset (i.e. ecological responses 
versus water quality, ecological responses versus land use, etc.). The number of 
variables within each category was different (e.g. water quality: 5 variables; hydrology: 
13 variables, land use and geology: 10 variables etc.), which precluded making direct 
comparisons between the model performances. However, we can compare results 
between habitats (edge vs. riffle) and between ecological responses (O/E score vs. 
thermophobic taxa relative abundance vs. whole community).  
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While this had the advantage of ensuring that our approach was less subject to 
statistical constraints, it meant that we lost the interactions between variables of 
different categories. However, relationships between the predictor variables are partly 
recovered in the Bayesian Network. 

4.3 Statistical methods  

4.3.1 Selection of predictor variables for threshold analysis and Bayesian 
  Network models 
In this study, we only identified threshold values for the predictors highly related to the 
ecological responses. To select the predictors that best fitted with the ecological 
response we used two different approaches, depending on the type of the ecological 
response: 

1. BEST test: a multivariate analysis technique used to explore the relationship 
between the environmental predictors and an entire ecological community (each 
taxon works as a response variable). Specifically, it compares a fixed matrix (biota) 
with an array of matrices derived from the environmental data (see (i) below and 
Figure 28). 

2. Boosted regression trees (BRT): univariate analysis used to explore the relationship 
between environmental predictors and the aggregated community level indicator 
(i.e. O/E scores and Thermophobic taxa relative abundance). 

(i) BEST test  
BEST test selects the combination of environmental variables which maximises the 
rank correlation (Rho, ρ), i.e. it ‘best explains’ the biotic assemblage structure (PRIMER 
v6) (Figure 28).  
 

 
 

Figure 28. Schematic diagram of the BEST matching procedure and the global BEST test 
(figure from Clarke et al. 2008, used with permission) 

The BEST test was carried out on normalised data to account for the different units of 
environmental variables. The resemblance matrix for the predictor variables was 
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produced using Euclidean distance; we used Bray–Curtis similarity (previous log-
transformed relative abundance) to produce the resemblance biotic matrix. 

Two different algorithms are available in PRIMER to carry out the “BEST test”: BioEnV 
and BVSTEP. We chose the latter because of the high number of predictor variables. 
BVSTEP adds and removes a variable until the optimum level of correlation (ρ) is 
reached (it uses a stepwise algorithm employing forward-stepping and backward-
elimination as in stepwise regression). A significance test is also calculated based on 
random permutations of sample names (we applied 999 permutations). The best 
variable combination is selected after each permutation of samples. 

(ii) Boosted regression trees (BRT)  
Boosted regression trees were developed from machine learning techniques 
(Friedman, Hastie & Tibshirani 2000) and can automatically model complex functions 
and the interactions between variables without making assumptions about the shape of 
the fitted functions or the interactions between variables (De’ath 2007; Elith et al. 
2006). This is a relatively new approach being applied in ecological studies (Elith, 
Leathwick & Hastie 2008). 

BRT combines regression tree and boosting algorithms to produce an ensemble of 
regression trees. The boosting algorithm improves standard regression tree modelling 
by adding a stochastic component to the model, which continuously emphasises the 
poorly explained part of the data space (Elith, Leathwick & Hastie 2008; Friedman, 
Hastie & Tibshirani 2000). BRT can be considered an advanced form of regression, 
which also uses a link function to examine a range of response types, including 
binomial, Poisson and Gaussian (Hastie, Tibshirani & Friedman 2001).  

BRT was used to model two of the invertebrate community indicators: O/E scores and 
Thermophobic taxa relative abundance. Both responses were modelled as a Gaussian 
response type.  

The predictive performance of the BRT models is optimised by means of the learning 
rate and tree complexity. The learning rate is used to shrink the contribution of each 
tree as it is added to the model, and to determine the number of nodes in a tree; it 
should reflect the true interaction order on the indicator being modelled (Friedman 
2001). All BRT models had a tree complexity of 5 and were optimised for their learning 
rate so that a minimum of 1000 trees was fitted for each model (Elith, Leathwick & 
Hastie 2008). All BRT analyses were carried out in R (version 2.15.0) (R Development 
Core Team 2011)) using the ‘gbm’ library (Ridgeway 2009) supplemented with 
functions from (Elith, Leathwick & Hastie 2008). 

To assess the contribution of each predictor variable to the BRT models, we assessed 
the relative contribution of each variable to the model. This measure assesses the 
number of times a variable is selected for splitting, weighted by the squared 
improvement to the model as a result of each split, and averaged over all trees (Elith, 
Leathwick & Hastie 2008).  

We assessed model performance using the cross-validated explained deviance — 
which provides a measure of the goodness-of-fit between the predicted and raw values 
— and the cross-validated correlation (cvCor), which provides a measure of correlation 
between the recorded observations and the model fitted values. The cvCor is 
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calculated as a Pearson correlation coefficient and thus takes into account how far the 
prediction varies from the observed data (Parviainen, Luoto & Heikkinen 2009). 

To visualise the fitted functions from the BRT model, partial dependence plots were 
used (Elith, Leathwick & Hastie 2008). These functions show the effect of a variable on 
the response, while controlling for the average effect of all other variables in the model 
(marginal effect).  

We used the two approaches (BEST test and BRT) to select those variables which 
would be used to construct the Bayesian Network model for each ecological response. 
The criterion to select variables was based on variable performance measures from the 
Best Test and the BRT. Best Test provides a Rho coefficient (ρ) and BRT provides the 
contribution of each variable to explain of total variability. However, the cutoffs of these 
two parameters need to be defined. We fixed the following criteria for our study:  

• for BRT models (O/E scores and Thermophobic taxa relative abundance): the 
predictors are considered as “the best” when their contribution to explaining the 
total variability is ≥10%. In cases where where no drivers contributed 10% or more, 
then those that contributed at least 7% were used. 

• for the BEST test (Whole community): this test selects a combination of variables 
which optimise the Rho coefficient (ρ). The variables are selected in descending 
order of their contribution to maximise the value of Rho. We selected as “the best 
predictors” the first variable which always had the highest ρ, and the remaining 
variables which increased ρ by 0.1 (Table 17). 

Table 17. Example of variable selection using the BEST test  

The first variable, “Flow_Perc90_365” (=Low Flow), was selected because it is the variable with 
the highest ρ. The second variable, “Flow_Xile” (=Flow Percentile) was also selected because it 
contributed 0.1 to increase the ρ. The third variable, “Flow_cv90” (=coefficient variation in 
preceding 3 months) was not selected because it does not increase the ρ by more than 0.1. 

 

 

(iii) Threshold estimation 

Thresholds have received considerable attention recently, causing a proliferation of 
different methods for identifying them in the last few years (Brenden, Wang & Su 
2008). The methods differ in their assumptions regarding the nature of the disturbance-
response variable relationship, which can make selecting between the approaches 
difficult. Moreover, the majority of methods for identifying ecological community 
thresholds are designed for univariate indicators or multivariate dimension-reduction of 
community structure (e.g. nMDS scores). Most are insensitive to responses of 
individual taxa with low occurrence frequencies or highly variable abundances, 
properties of the vast majority of taxa in ecological community data sets.  

Taking into account these considerations, we applied three methods, which use 
different algorithms to identify thresholds: 

WHOLE COMMUNITY - EDGE
No.Vars    Corr. Selections Rho coeff. (ρ) Variables Selection criterion

1 0.335 flow_perc90_365
2 0.437 flow_perc90_365 + flow_Xile

3 0.463 flow_perc90_365 + flow_Xile + flow_cv90
Disregarded (contribution to 

increase ρ <0.1)

Selected as "the best drivers"
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• Quantile Piecewise Linear (QPL): a regression tree method that uses quantiles 
to partition groups (Koenker & Bassett 1978). We used it to estimate the 
thresholds for univariate ecological responses or aggregated community 
indicators, i.e. O/E scores and Thermophobic taxa relative abundance. 

• Linkage Tree (LINKTREE): a multivariate adaptation of regression trees 
(Clarke, Somerfield & Gorley 2008). We used it to estimate the thresholds for 
multivariate ecological response, i.e. Whole community. 

• Threshold Indicator Taxa Analysis (TITAN): similar to regression trees (De’ath & 
Fabricius 2000) and change-point analysis (King & Richardson 2003; Qian, 
King & Richardson 2003) but it uses indicator species scores (Dufrêne & 
Legendre 1997) instead of deviance reduction to locate taxon-specific change 
points. We used it to estimate the thresholds for Whole community but focused 
on taxon-specific responses unlike LINKTREE. 

(a) Quantile Piecewise Linear (QPL) 
Quantile Piecewise Linear (QPL) is an appropriate analytical tool for defining limiting 
relationships from data that typically appear as wedge-shaped distributions in plots of 
biotic response to some stressor. (That is, they show small changes in the mean value 
of the response variable along the gradient of the independent variable, but large 
changes at the upper end of the distribution (Bryce, Lomnicky & Kaufmann 2010; 
Cade, Terrell & Schroeder 1999; Dunham, Cade & Terrell 2002; Kail, Arle & Jähnig 
2012; Koenker & Bassett 1978).  

QPL quantifies the rate of change in the quantiles of the dependent variable, including 
the lower and upper ends of the distribution (Cade, Terrell & Schroeder1999; Kail, Arle 
& Jähnig 2012; Koenker & Bassett 1978), whereas other statistical methods, such as 
least-squares regression, focus on the centre of the distribution (mean or median). For 
each specific quantile (tau (ԏ), e.g. 0.1, 0.25, 0.50, 0.75, 0.90), a linear function is fitted 
such that approximately ԏ proportion of the observations are below and 1−ԏ are above 
the line.  

For wedge-shaped relationships, the slopes increase for higher quantiles. Similar 
slopes among the upper regression lines indicate that the response variable is not 
limited by other unmeasured factors (Bryce et al. 2008; Cade, Terrell & Schroeder 
1999; Kail, Arle & Jähnig 2012). The most appropriate regression line is the largest 
quantile with the narrowest confidence intervals for a regression line slope that does 
not contain zero (Bryce, Lomnicky & Kaufmann 2010; Cade, Terrell & Schroeder 1999; 
Kail, Arle & Jähnig 2012).  

To identify threshold values based on QPL, we followed three steps. 

1. Identification of the “best quantile”. 

a. Question: Is it a wedge-shaped relation? We screened visually for wedge-
shaped bivariate relationships between ecological responses (i.e. O/E scores 
and Thermophobic taxa relative abundance) and predictors (previously selected 
by BRT). Scatterplots with quantile regression lines (10th, 25th, 50th, 75th, 90th) 
were inspected.  

b. Question: Do the slopes between quantile regression lines differ? If yes, do the 
slopes in the upper quantile differ? (i.e. is the predictor variable the main limiting 
factor?). We tested slope variances for continuous quantiles between 0.05 and 
0.95. 
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c. Question: Which is the best quantile to describe the relationship (i.e. the largest 
quantile with the lowest uncertainty for the regression slope)? 

For steps 1 a, b and c we used the quantreg package in R.2.15.1 (R Development 
Core Team 2011).  

2. Visualisation of the threshold. 

a. Once the best quantile was identified (step 1c), we visually identified possible 
sharp changes in the response variable (i.e. threshold) at this quantile. Locally 
weighted quantile regression (loess-QR) was selected for the visually identified 
threshold (Kail, Arle & Jähnig 2012; King & Baker 2010; Koenker 2011). Loess-
QR was carried out for using the function lprq in the quantreg package (R.2.12.0 
R Development Core Team 2011).  

b. The function lprq locally fits a linear regression model at several points equally 
spaced along the independent variable with a specific bandwidth. An 
intermediate bandwidth resulting in the sharpest change was selected visually. 
Furthermore, two additional curves were included in the figures to show that 
lower bandwidths result in an angular curve, which is strongly influenced by 
single data points, and the curve approaches the linear quantile regression line 
for higher bandwidths. 

3. Estimation of the threshold. 

 Visual procedure (step 2) is sufficient to provide a rough idea where the threshold is 
expected. To support this, we used the QPL approach available in GUIDE v12.6 
(Loh 2002) to identify the threshold values at the best quantile.  

(b) Linkage Tree (LINKTREE) 
Linkage Tree (LINKTREE) is a routine implanted in PRIMER (Clarke, Somerfield & 
Gorley 2008). It is a multivariate adaptation of “Multivariate Regression Trees” (MRT) 
developed by De’ath (2002). LINKTREE is a binary divisive cluster analysis based at 
each step on maximising the ANOSIM R statistic for the two groups that are produced 
at each split, and represented in the hierarchical diagram.  

LINKTREE combines two techniques of PRIMER: the “BEST test” (see above) to select 
the environmental variables that best explain the biotic pattern and “similarity 
permutation tests” (SIMPROF test) to provide objective stopping rules for further 
subdivisions (Clarke, Somerfield & Gorley 2008). The SIMPROF test looks for 
statistically significant evidence of genuine clusters in samples which are a priori 
unstructured. (For further information, Clarke, Somerfield & Gorley 2008.) LINKTREE 
produces a divisive, constrained, hierarchical cluster analysis of samples, based on the 
assemblage data. The constraint is that each binary division of the tree corresponds to 
a threshold on one of the environmental variables, and maximises the separation of the 
two groups (ANOSIM R statistic).  

LINKTREE needs to fix three parameters: the minimum split size, minimum split R and 
minimum group size. We considered, as a rule of thumb, minimum split size = 4, 
minimum split R = 0 (to allow all possible splits) and minimum group size = the number 
of samples corresponding to 20% of the given dataset (e.g. if the edge–water quality 
dataset contained 134 records, minimum group size was 27, i.e. 20% of 134). 
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(c) Threshold Indicator Taxa Analysis (TITAN) 
Threshold Indicator Taxa Analysis (TITAN) splits sample units into two groups at the 
value of a predictor variable (xi, ξ, candidate change points) that maximises the 
association of each taxon with one side of the partition (i.e. above and below ξ). 
Association is measured by taxon abundances weighted by their occurrence in each 
partition (Dufrêne & Legendre 1997) and standardised as z-scores to facilitate cross-
taxon comparison via permutation of samples along the predictor.  

TITAN distinguishes declining (negative response) and increasing (positive response) 
taxa and tracks the cumulative responses of increasing and decreasing taxa in the 
community. Bootstrapping is used to identify reliable threshold indicator taxa (“purity”) 
and the uncertainty around the location of taxon and community change points 
(“reliability”). Evidence for a community threshold is obtained through synchronous 
changes in the abundance of many taxa within a narrow range of predictor values. 
TITAN was run with the TITAN package in R.2.9.2. (Further details of the TITAN 
method: Baker & King, 2010.) 

Note that for our purposes, we were interested in the threshold derived from the taxa 
showing a negative response, because this value indicates the point at which the 
community shifts to more tolerant taxa.  

4.3.2 Results and discussion  
Overall, the BRT models performed well, explaining between approximately 30 and 
80% of the variation in the ecological responses modelled (O/E scores and 
Thermophobic taxa relative abundance) (Table 18). In general the cross-validation 
correlations were around 0.5, except for the water quality model for O/E scores in riffle 
sites, which had a lower value. Relationships between predictors and ecological 
responses were stronger for edge than in riffle, in contrast to the study conducted by 
Marchant & Dean (2012) in Victorian streams (Table 19).  

The influence of land use and geology variables differed between edge and riffle sites 
(Table 19). BRT models based on these variables for O/E scores or Thermophobic 
taxa relative abundance, explained 2-fold more using the edge data compared with the 
riffle data. Furthermore, it is noteworthy that only land use variables were selected in 
edge, while only geology variables were selected in riffle, for either of the ecological 
responses (Table 19; Figures 29–32).  

These differences might be explained by the physical position of the edge and riffle 
habitats in the stream. The riffle habitat may be more dependent on the geology of the 
stream environment, potentially because of groundwater interactions or substrate 
structure. By contrast, the edge habitat, located on the margins of the stream bank is 
likely to be more affected by local land use practices.  

Models for edge sites also showed that habitat variables were more influential than in 
riffle sites. The three response variables in edge (O/E score, Thermophobic taxa 
relative abundance, Whole community) were related to habitat variables associated 
with the bank habitat and the riparian zone (Table 19; Figures 29–32). In riffle sites, 
only the whole community response showed a strong relationship with any of the 
habitat variables tested, responding to periphyton (Table 19).  
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Table 18. Performance of the BRT models for the ecological responses for the univariate aggregate indicators:  O/E score and Thermophobic taxa 
relative abundance.  Mean explained (%) refers to the variability explained by the model. 

 

Edge Riffle Edge Riffle Edge Riffle Edge Riffle Edge Riffle
Mean explained (%) 79.37 57.89 71.01 70.27 51.56 28.95 71.67 52.63 60.94 39.47
Mean total deviance 0.063 0.038 0.069 0.037 0.064 0.038 0.060 0.038 0.064 0.038
mean residual deviance 0.013 0.016 0.020 0.011 0.031 0.027 0.017 0.018 0.025 0.023
estimated cv deviance (se) 0.034 (0.002) 0.029 (0.002) 0.035 (0.002) 0.027 (0.002) 0.038 (0.002) 0.033 (0.001) 0.033 (0.001) 0.028 (0.004) 0.031 (0.002) 0.028 (0.002)
training data correlation 0.90 0.79 0.85 0.84 0.72 0.58 0.86 0.76 0.78 0.64
cv correlation (se) 0.672 (0.018) 0.485 (0.028) 0.695 (0.03) 0.519 (0.033) 0.638 (0.011) 0.364 (0.045) 0.651 (0.031) 0.543 (0.052) 0.717 (0.015) 0.525 (0.024)

Edge Riffle Edge Riffle Edge Riffle Edge Riffle Edge Riffle
Mean explained (%) 56.95 67.78 60.64 63.93 44.50 39.98 62.46 41.77 48.49 28.87
Mean total deviance 70.309 194.823 75.014 187.515 69.058 192.160 49.761 157.548 67.129 191.547
mean residual deviance 30.277 62.781 29.526 67.628 38.325 115.340 18.682 91.734 34.576 136.254
estimated cv deviance (se) 53.331 (6.731) 154.794 (13.64) 50.654 (9.381) 121.995 (14.427) 50.665 (8.107) 149.726 (15.075) 36.225 (6.167) 132.538 (27.16) 47.872 (9.558) 159.486 (15.359)
training data correlation 0.79 0.856 0.80 0.81 0.69 0.66 0.82 0.70 0.70 0.54
cv correlation (se) 0.506 (0.022) 0.469 (0.028) 0.61 (0.031) 0.595 (0.033) 0.545 (0.037) 0.482 (0.039) 0.517 (0.029) 0.436 (0.053) 0.552 (0.047) 0.425 (0.027)

O/E SCORE

Thermophobic Abundance

Water Quality HYDROLOGY LANDUSE - GEOLOGYClimateHabitat

Water Quality Flow Land use and GeologyClimateHabitat
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Table 19. The three ecological responses considered in this study (O/E scores, Thermophobic taxa relative abundance, Whole community) and the 
best predictors associated with each ecological response. Predictors are classified according to the following categories: Habitat, Climate, Water 
Quality, Hydrology, Land use.  For each driver, the deviance explained within the BRT model for the univariate aggregated indicators (i.e. O/E 
scores and Thermophobic taxa relative abundance) or the Rho coefficient (ρ) derived from the BEST text for the whole community, is shown in 
brackets. For explanation of predictors and their units see Appendix L. 

 

 

Edge Riffle
O/E Score % Cover of Riparian Zone by Shrubs (10.66%) 

Thermophobic Abundance Habscore (12.54%)

BEST test Whole macroinvertebrate Shading of River (ρ=0.150) Periphyton (ρ=0.127)

Rainfall (annual mean) (8.4%) 

Temp max (annual mean) (7.2%)

Temp min (annual mean) (7.2%)

Thermophobic Abundance Temp max (annual mean) (22.68%) Rainfall (annual mean) (20.18%)

BEST Test Whole macroinvertebrate Temp max (annual mean) (ρ=0.246) Rainfall (annual CV) (ρ=0.15)

EC (31.79%) Water Temperature (7.7%)

DO (9.98%) EC (7%)

Water Temperature (18.8%)

EC (7.9%)*

BEST Test Whole macroinvertebrate EC (ρ=0.308) Water Temperature  (ρ=0.114)

Flow (annual mean) (13.9%) Flow (annual mean) (12.5%)

Num. Days CTF (Year) (11.1%) High Flow (10th Year) (9.8%)

Flow Percentile (11.07%)

Flow (annual CV) (10.65%)

Low Flow (90th Year)
Flow Percentile (ρ=0.415)

Granite (8.10%)

Other (8.06 %)
Thermophobic Abundance Agriculture (11.57%) Sandstone (7.91%)

BEST Test Whole macroinvertebrate Intense (ρ=0.208) Volcsed  (ρ=0.181)

BEST DRIVERS (per mesohabitat)

O/E Score

O/E Score

CLIMATE

WATER 
QUALITY

HABITAT

PROCEDURE ECOLOGICAL RESPONSECATEGORY 
OF DRIVER

BRT

EC (21.91%)

Temp max (annual mean) (33.05%)

Low Flow (90th Year) (11.35%)

High Flow (10th Year) (ρ=0.123)

 Intense (37%)
LANDUSE 
GEOLOGY

HYDROLOGY

Whole macroinvertebrateBest Test

BRT

BRT

BRT

BRT
O/E Score

Thermophobic Abundance

O/E Score

Thermophobic Abundance
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In the case of water quality variables, electrical conductivity (EC) was selected as an 
important predictor of both edge and riffle macroinvertebrates for most of the ecological 
responses, but was more important for edge (Table 19). In addition, the water 
temperature was significant for all three ecological responses in riffle (Table 19; 
Figures 29–32). Dissolved oxygen was also important for O/E scores in edge 
(Table 19). In riffle communities this may be a reflection of the relationship between 
water temperature and water levels. When discharge is low, the water temperature is 
expected to be higher, changing the community living in the riffle. The importance of 
flow is also shown in the relationship with the hydrological variables, as the ecological 
responses in riffle were associated with low and high flow. Meanwhile in the edge, 
other hydrological variables such as the coefficient of variation, cease to flow (CTF) or 
flow percentile were selected (Table 19; Figures 29–32). 

Finally, climate variables (air temperature and rainfall) explained a large part of the 
variability in both edge and riffle ecological responses (Table 19). In edge sites, mean 
annual maximum temperature was the only predictor variable selected across the three 
ecological responses (Table 19; Figures 29–32). In riffle, rainfall appeared to be the 
most important climatic variable instead of temperature (Table 19).  

The relationship between temperature and the ecological responses in edge sites and 
the rainfall in riffle sites may again be related to local differences between these 
habitats. Macroinvertebrates in the riffle sites are likely more dependent on the water 
discharge which in turn is influenced by the rainfall; meanwhile, the edge is more 
associated with the land–water–air interface and so may be more dependent on the air 
temperature. 

In addition, partial dependence plots produced using the BRT approach allowed an 
initial view of the relationship between the response variables and the ‘best’ variables, 
giving an estimate of where we could expect the threshold value (or regime shift) to 
occur. For instance, O/E scores in edge (Figure 29) responded positively to % Cover of 
riparian zone by shrubs, and to dissolved oxygen. Based on the graphs, one might 
reasonably expect threshold values around 20% and 8 mg/L, respectively for these two 
predictors. On the other hand, O/E scores in edge responded negatively to maximum 
temperature, conductivity, flow, cease-to-flow and intense land use. Threshold values 
around 19oC (temperature), 100 µS/cm (EC) and 10% (intense land use) could be 
predicted. In the case of the cease-to-flow (number of days) there appear to be two 
thresholds, first around 25 days and a second one before 50 days. Mean daily flow for 
the year (ML/day) appeared to have a unimodal response, with an increase in the O/E 
scores around 100 ML/day, and then a decrease in the variables response after this 
threshold. 
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Figure 29. Partial dependence plots for the seven most influential variables in the model for O/E score in edge. For explanation of variables and their 
units see Appendix C. Y axes are on the logit scale and are centred to have zero mean over the data distribution. Rug plots at inside top of plots show 
distribution of sites across that variable, in deciles. 
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Figure 30.  Partial dependence plots for the nine most influential variables in the model for O/E score in riffle. Note that the influence of these 
variables was very weak (see text in Results and Methods). For explanation of variables and their units see Appendix L. Y axes are on the logit scale and are 
centred to have zero mean over the data distribution. Rug plots at inside top of plots show distribution of sites across that variable, in deciles. 
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Figure 31. Partial dependence plots for the six most influential variables in the model for thermophobic taxa relative abundance in edge. For 
explanation of variables and their units see Appendix C. Y axes are on the logit scale and are centred to have zero mean over the data distribution. Rug plots 
at inside top of plots show distribution of sites across that variable, in deciles. 

 

THERMOPHOBIC ABUNDANCE - EDGE
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Figure 32. Partial dependence plots for the five most influential variables in the model for thermophobic taxa relative abundance in riffle.  

For explanation of variables and their units see Appendix L. Y axes are on the logit scale and are centred to have zero mean over the data distribution. Rug 
plots at inside top of plots show distribution of sites across that variable, in deciles.

THERMOPHOBIC 
ABUNDANCE - RIFFLE
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(i) Threshold estimation 

Overall, threshold values estimated by the different methods and associated with the 
different ecological responses were relatively similar (Tables 20–22; Figure 33). TITAN 
tended to give lower values than other methods (e.g. for % Shading in the river in edge, 
conductivity in edge, % Volcanic sediment in riffle; Figure 33 (a), (f) and (j), 
respectively). However, when the 95% confidence intervals associated with TITAN 
values were taken into account, the differences with other methods were not as 
pronounced.  

This suggests that the signals between environmental predictors and the different 
community responses (either multivariate or univariate) are robust. These results are 
very interesting from an ecological and management view point, because it guarantees 
that choosing one of the community metrics can help preserve other aspects of the 
community; they are not exclusive. 

The hydrological variables produced the most variable threshold values. For instance, 
for the low flow in the edge sites and the whole community, the LINKTREE method 
resulted in two distinct thresholds (first split around 5–7 days and second split around 
48–49 days, Figure 33(g); Figure 34). In contrast, only one threshold was identified for 
the low flow using TITAN which corresponded to the second one given using 
LINKTREE (Figure 33(g)). Notwithstanding this, when we looked at the output 
produced by TITAN, two other potential changes points (light and dark grey arrows in 
Figure 35(a)) in addition to the peak (black arrow) are highlighted. The first potential 
change point appeared to be consistent with the first split detected by LINKTREE.  

Table 20. Threshold values of the “best predictors” associated with O/E scores.  

The variables are described in Appendix L.  
For % Shading of river, 1 = <5%, 2 = 6–25%, 3 = 26–50% , 4 = 51–75% , 5 = >76%. 

Category of 
driver O/E-score  

QPL 

Edge Riffle 
HABITAT % Cover of Riparian Zone by Shrubs  23%   

CLIMATE 
Temp max (annual mean)  20.87 18.95 
Rainfall (annual mean)    2.65 

Temp min (annual mean)    7.35 

WATER 
QUALITY 

EC (µS/cm) 118.85 146.55 
DO (mg/L) 7.44   

Water Temperature (◦C)   13 

HYDROLOGY 
Flow (annual mean)  82.04 249 
Num. Days CTF (Year)  43   

High Flow (10th Year) (num days)   10.5 

LANDUSE 
GEOLOGY 

 Intense  1.5   

Granite   5.5 

Other    2.5 
LANDSCAPE Elevation from 600 m every 100 m 
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Table 21. Threshold values of the “best predictors” associated with Thermophobic taxa 
relative abundance.  

The variables are described in Appendix L. 

Category of 
driver Thermophobic Abundance 

QPL 

Edge Riffle 
HABITAT Habscore  84   

CLIMATE 
Temp max (annual mean) 18.95   

Rainfall (annual mean)    2.65 
WATER 

QUALITY 
EC (µS/cm) 153.55 97 

Water Temperature (◦C)   12.5 

HYDROLOGY 

Flow Percentile 86.71   
Flow (annual CV)  2.3   
Low Flow (90th Year) (num days)   <5.5 / >95 

LANDUSE 
GEOLOGY 

Agriculture  
<2 / 10 / >70   

Sandstone    NA 
LANDSCAPE Elevation from 600 m every 100 m 

 

Table 22. Threshold values of the “best predictors” associated with Whole community.  

The variables are described in Appendix L.  
Note that LINKTREE and TITAN deal with the macroinvertebrate assemblage, but LINKTREE 
uses all taxa, meanwhile TITAN is based on indicator taxa.  
For periphyton, 1= <10%, 2 = 10–35%, 3 = 35–65%, 4 = 65–90%, 5 = >90% are categorical. 

Category of 
driver 

Whole community LINKTREE (all taxa) TITAN (indicator taxa) 
Edge Riffle Edge Riffle 

HABITAT 
Shading of river >3(<2)  0.5 CI (0–2)  
Periphyton  >3(<2)  2(1–2) 

CLIMATE Temp max (annual mean) <19(>19)  19.0 CI 
(18.9–19.4)  

Rainfall (annual CV)  <3.07 
(>3.07)  3.0 CI  

(2.9–3.1) 

WATER 
QUALITY 

EC (µS/cm) <158 (>155)  95.0 CI 
(73.7–
119.5) 

 

Water temperature (oC)  <12.5 
(>12.5)  11.89 CI 

(9.81–12.28) 
HYDROLOGY Low flow (90th year) (num 

days) 
<5(>7)  
48(>49)  42 CI  

(12–49)  
Flow percentile <69.3(>69.3)  

<46.2(>46.2)  
<87(>87.2) 

 69.5 CI 
(19.3–86)  

High flow (10th year) (num 
days) 

 <0(>1)  2 CI (0–3) 

LAND USE  
GEOLOGY 

Intense <2.33(>4.01)  7.35 CI (0–
9.20)  

Volcsed  <2.87 
(>2.87)  0.025 CI  

(0–2.87) 
LANDSCAPE Elevation  <601(>612) <601(>612) 640 CI 

(574–692) 
612 CI (566–

671) 
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Figure 33. Bar plots showing thresholds produced by different methods and associated with different ecological responses.  

Note that not all thresholds have been plotted. See Tables 20–22 for those missing in this figure. 
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Figure 34.  Linkage tree analysis (LINKTREE), showing divisive clustering of records 
from species compositions from the edge mesohabitat, constrained by inequalities on 
low flow (cluster plot).  

Given for each split is the optimal ANOSIM R value (relative subgroup separation; from 0 to 1 
being 1 maxima separation between groups) and B% (absolute subgroup separation, scaled to 
maximum for first division; it indicates how well separated the two groups of samples are, from 0 
to 100 being 100 maxima separation). For each binary partition (A, B), first inequality defines 
group to left, second inequality (in brackets) group to right. Minimum group size= 66 and 
minimum split size= 4. Stopping rule of p<0.05 for the SIMPROF test. 
 

In relation to the high flow in riffle, TITAN and LINKTREE produced similar thresholds 
for the whole community. This threshold differed from that produced for the O/E scores 
using the QPL method. In this case, it appears that the ecological response determines 
the threshold value. However, thresholds estimated for O/E scores should be 
interpreted with caution, because the relationship between high flow and O/E scores 
was weak (Figure 36(a)) and the confidence intervals around the slopes were broad for 
the best quantile (Figure 36(b)).   

4.3.3 Water quality thresholds: guidelines versus estimated thresholds 

As mentioned previously, three water quality attributes (EC, water temperature and 
dissolved oxygen) of the five considered in this study (Table 19) were related to the 
ecological responses. Only EC (conductivity) and dissolved oxygen could be compared 
with theoretical thresholds provided by the ANZECC guideline (Table 23) because 
theoretical values for the water temperature have not been established.  

Overall, threshold values for conductivity that were estimated using different methods 
and different ecological responses were similar (Table 20–22; Figure 33(f)). These 
estimated thresholds are within the ranges of those proposed by the ANZECC 
guidelines (ANZECC/ARMCANZ 2000). The accepted thresholds provided by the 
ANZECC guideline for conductivity are very broad (Table 23). However, the 
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conductivity thresholds estimated in this study would be closer to the lower threshold 
proposed for lowland rivers in the ANZECC guidelines and the middle of the thresholds 
proposed for upland rivers. It is worth noting that most guidelines incorporate a safety 
factor and are likely to represent an overestimate of what is considered a suitable limit. 

 

 

 

Figure 35. (a) TITAN of macroinvertebrate community response to low flow (num. days) in 
Edge showing (a) sum(z) across the Low Flow, and (b) significant indicator taxa.  
 

In (a) TITAN sum(z-) and sum(z+) values correspond to candidate change points ( ) a long the  

gradient. Peaks in sum(z-) correspond to locations along the gradient where synchronous 
declines of taxa occur, with the most substantial peak occurring at 42 days (maximum remarked 
with a black arrow). Solid and dashed lines represent the cumulative frequency distribution of 
change points (xcp [thresholds]) among 100 bootstrap replicates for sum(z-) and sum(z+), 
respectively. Arrows indicating two potential change points (light and dark grey arrows) and the 
peak(blackarrow) are shown. 
In (b) significant (purity ≥ 0.95, reliability ≥ 0.90, p < 0.05) indicator taxa are plotted in increasing 
order with respect to their observed change point. Black symbols correspond to negative (z-) 
indicator taxa, whereas red symbols correspond to positive (z+) indicator taxa. Symbol sizes are 
in proportion to magnitude of the response (z scores). Horizontal lines overlapping each symbol 
represent 5th and 95th percentiles among 100 bootstrap replicates. Individual taxa are included 
in boxes in approximate correspondence with sum values of the potential change points in (a). 

  



 Predicting water quality and ecological responses 95 
 

 

Table 23. Comparative table of the thresholds provided by the ANZECC guidelines 
(ANZECC/ARMCANZ 2000) and the thresholds estimated in our study (these latter 
specified for each type mesohabitat — edge and riffle — and the type of the ecological 
response associated with each method). 
 

Method Source Salinity  
µS/cm 

Salinity  
µS/cm 

Dissolved 
oxygen mg/L 

  Upland 
rivers 

Lowland 
rivers 

Upland rivers 

Theoretical  Guidelines thresholds 
(ANZECC/ARMCANZ) 

30–350 125–2200 6 

QPL  
O/E scores 

Edge 118.85 7.44 
Riffle 146.55  

QPL  
Thermophobic 
abundances 

Edge 153.55  
Riffle 97  

LINKTREE  
Whole community 

Edge 155  
Riffle   

TITAN Indicator 
taxa 

Edge 95 (73.7–119.5)  
Riffle   

 

 

Figure 36. (a) Scatterplots of O/E scores and high flow in riffle. The 0.10–0.90 quantile 
regression lines are given (tau=0.50 in orange). (b) Quantile regression line slopes and 90% 
confidence intervals (grey area) for different quantiles (from 0.05 to 0.95 with a 0.05 step 
width). * = the quantile selected for further analysis. 

Having a guideline which provides trigger values is helpful, particularly from a 
management viewpoint. However, they can be too general and therefore not be useful 
for specific ecosystems and / or for identifying the ecological responses. For instance, it 
is known that within the same biological community, species have different conductivity 
tolerance levels. In this sense, TITAN could be considered a better predictor of 
thresholds than the other methods, because it is able to discriminate the indicator taxa 
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into “tolerant” (z+) and “sensitive” (z-). This may be why the conductivity threshold 
derived using TITAN was slightly lower than others.  

Figure 37 shows the responses of the tolerant (z+) and sensitive (z-) taxa to electrical 
conductivity. “Sensitive taxa” (z-) declined sharply between 0.08 µS/cm 
(Glossosomatidae) and 320 µS/cm (Acarina) (Figure 37(b)), resulting in a sum(z-) 
change point of 95.0 µS/cm with a relatively narrow 95% confidence interval (CI) (73.7–
119.5 µS/cm). On the other hand, positive (z+) indicators (i.e. “tolerant taxa”) increased 
between 52 µS/cm (Vellidae) and 1003 µS/cm EC (Parastacidae), resulting in a distinct 
sum(z+) peak at 78.4 µS/cm; however, this increase was not very distinct and the 95% 
CI covered a broad range (69.6–1251.5 µS/cm) which prevented a clear threshold from 
being identified. It should be noted however that for our purposes, we are interested 
only in the threshold for the negative response (z- or sensitive taxa). 

TITAN provides numerous advantages for estimating thresholds, since it is able to 
consider the individual responses of indicator taxa (based on purity and reliability). 
Furthermore, it provides a range of uncertainty around the threshold value (i.e. as lower 
and upper CI). However, it has recently received some criticism, mainly based on the 
requirement for removal of rare taxa (further information in Cuffney et al. 2010). And as 
stated before, TITAN only selects a single peak (maximum) to be the threshold, 
although others may also be important (e.g. low flow, Figure 35). 

In contrast to TITAN, LINKTREE considers the whole macroinvertebrate assemblage 
with no restrictions in relation to rare taxa. However, no distinction between “sensitive” 
and “tolerant” taxa is possible, potentially leading to less distinct thresholds.  
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Figure 37. (a) TITAN of macroinvertebrate community response to electrical conductivity (EC, µS/cm) in Edge showing (a) sum(z) across the EC, 
and (b) significant indicator taxa 
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In (a) TITAN sum(z-) and sum(z+) values correspond to candidate change points ( ) a long the  

gradient. Peaks in sum(z-) correspond to locations along the gradient where synchronous 
declines of taxa occur, with the most substantial peak occurring at 95 µS/cm. Solid and dashed 
lines represent the cumulative frequency distribution of change points (xcp [thresholds]) among 
100 bootstrap replicates for sum(z-) and sum(z+), respectively.  
In (b) significant (purity ≥ 0.95, reliability ≥ 0.90, p < 0.05) indicator taxa are plotted in increasing 
order with respect to their observed change point. Black symbols correspond to negative (z-) 
indicator taxa, whereas red symbols correspond to positive (z+) indicator taxa. Symbol sizes are 
in proportion to magnitude of the response (z scores). Horizontal lines overlapping each symbol 
represent 5th and 95th percentiles among 100 bootstrap replicates. 

Figure 38 shows the output of LINKTREE for the whole macroinvertebrate assemblage in relation 
to conductivity in edge. It is not possible to give an uncertainty value for a split in a dendrogram. 
However, LINKTREE produces a test to check whether such a split should be made or not 
(SIMPROF test; Clarke et al. 2008). If there is no statistical evidence of heterogeneity in the 
samples below any particular node in the dendrogram then there is no basis for splitting that 
group further. This provides confidence in the splits that are produced.  In the dendrogram (Figure 
38) three possible thresholds (splits) at 158, 39 and 52 µS/cm are shown. However, the ANOSIM 
R statistic values were very low for the splits B and C. This implies that despite significant 
heterogeneity in the samples between C and D (i.e. differences between the macroinvertebrate 
assemblages) the very low R values preclude us considering these splits. So, the conductivity 
threshold value in this case was determined based on the first split.  

The main advantage of LINKTREE is that splits can be constrained for more than one 
environmental driver which is the main limitation of most of the procedures. In this study, we 
considered only one predictor to be able to compare with the other two approaches, TITAN and 
QPL.  
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Figure 38. Linkage tree analysis (LINKTREE), showing divisive clustering of records from 
species compositions from Edge mesohabitat, constrained by inequalities on coefficient of 
variation of the electric conductivity (EC) (cluster plot). Given for each split is the optimal 
ANOSIM R value (relative subgroup separation; from 0 to 1 being 1 maxima separation between 
groups) and B% (absolute subgroup separation, scaled to maximum for first division; it indicates 
how well separated the two groups of samples are, from 0 to 100 being 100 maxima separation). 
For each binary partition (A, B, C…), first inequality defines group to left, second inequality (in 
brackets) group to right. Minimum group size= 27 and minimum split size= 4. Stopping rule of 
p<0.05 for the SIMPROF test. 

LINKTREE and TITAN deal with the macroinvertebrate assemblage. Aggregated community 
indicators (or metrics) can also provide very useful information. Both types of ecological 
responses are important in developing an understanding of how organisms respond to 
environmental predictors (Barbour et al. 1999). Therefore, we produced conductivity thresholds 
for the metrics: O/E scores in edge and Thermophobic taxa relative abundances in riffle. We 
found that the scatterplot for both responses did not show a wedge-shaped distribution for which 
QPL is specially designed (Figure 39(a) and Figure 40(a)). However, differences in the response 
from the lower to the higher quantiles were significant (p<0.05 for both responses), including 
significant differences in the slopes of the upper quantiles (0.75 and 0.90, p<0.05). The best 
quantile (largest with the narrowest CI) resulted in 0.85 and 0.7 for O/E scores in edge and 
thermophobic taxa relative abundance in riffle, respectively. Note that the latter has a high CI 
variability.  

Therefore, the estimated conductivity threshold in this case has to be carefully considered. This 
uncertainty is similar to the weak relationship detected in the BRT between the thermophobic taxa 
relative abundance in riffle and conductivity. 

No specific conductivity threshold was evident in the scatterplot for O/E scores or Thermophobic 
taxa relative abundance. However, the locally weighted quantile regression models for different 
bandwidths showed a change at around 100 µS/cm (Figure 39(b) and Figure 40(b)).The quantile 
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regression tree analysis (GUIDE result) resulted in a threshold of 118.85 µS/cm for the 0.85 
quantile in O/E scores for edge and 96.6 µS/cm for the 0.7 quantile in Thermophobic taxa relative 
abundance for riffle. 

It was not possible to compare the dissolved oxygen threshold, because it was only related to the 
O/E scores in edge (Table 20). The dissolved oxygen threshold value was estimated with QPL 
and yielded a value slightly higher than the theoretical value proposed by the ANZECC guideline 
(Table 23). The uncertainty surrounding the slopes was generally wide, which makes us carefully 
consider this threshold (Figure 41(c)). The locally weighted quantile regression model showed the 
shape of a sigmoidal curve, at the most optimal bandwidth (i.e. red, Figure 41(b)). This is the 
typical curve describing a regime shift. We observed that the change occurred at ~7 mg/L. The 
quantile regression tree analysis (GUIDE result) resulted in a threshold of 7.44 mg/L. 

The results obtained in our investigation of thresholds gave us the confidence to use the 
empirically derived thresholds in Bayesian Networks. 

4.3.4 Use of thresholds in the Bayesian Networks 

One of the difficulties in constructing Bayesian Network is the discretisation of the continuous 
variables in categories. To discretise continuous variables in the BN, we have applied the 
thresholds to establish these categories. We discretised the variables as “above” and “below” the 
estimated threshold. Tables 24–29 show the categories of the “best predictors” and the thresholds 
for each of them which we used in the Bayesian Networks for macroinvertebrates.  
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Figure 39. (a) Scatterplots of O/E scores and electrical conductivity (EC) in Edge. The 0.10–0.90 quantile regression lines are given (tau=0.50 in 
orange). (b) Locally weighted quantile regression models with different bandwidths. (c) Quantile regression line slopes and 90% confidence 
intervals (grey area) for different quantiles (from 0.05 to 0.95 with a 0.05 step width). * = the quantile selected for further analysis. 
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Figure 40. (a) Scatterplots of Thermophobic taxa relative abundance and electrical conductivity (EC) in riffle. The 0.10–0.90 quantile regression lines 
are given (tau=0.50 in orange). (b) Locally weighted quantile regression models with different bandwidths. (c) Quantile regression line slopes and 
90% confidence intervals (grey area) for different quantiles (from 0.05 to 0.95 with a 0.05 step width). * = the quantile selected for further analysis. 
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Figure 41. (a) Scatterplots of O/E scores and dissolved oxygen (DO) in edge. The 0.10–0.90 quantile regression lines are given (tau=0.50 in orange). (b) 
Locally weighted quantile regression models with different bandwidths. (c) Quantile regression line slopes and 90% confidence intervals (grey 
area) for different quantiles (from 0.05 to 0.95 with a 0.05 step width). * = the quantile selected for further analysis. 
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Table 24.  Categorisation of the best predictors associated with O/E score in edge, based 
on the estimated thresholds 

 

 

Table 25. Categorisation of the best predictors associated with O/E score in riffle based 
on the estimated thresholds 

 

 

Table 26.  Categorisation of the best predictors associated with Thermophobic taxa 
relative abundance in edge based on the estimated thresholds 

 
 

  

CATEGORY OF 
DRIVER O/E-SCORE in EDGE No change Change 1 Change 2 Change 3

HABITAT % Cover of Riparian Zone by Shrubs 0 - 23% 23-60% 60 - 100%
CLIMATE Temp max (annual mean) <19 19-21 >21

EC 0-118 118-350 350-800
DO 0-7.44 7.44-9 >9

Flow (annual mean) 0-82 82-300 300-500
Num. Days CTF (Year) 0-20 20-43 43-80 >80

LANDUSE GEOLOGY  Intense 0-2% 2-10% 10-50% >50%
LANDSCAPE Elevation <600 >600

HYDROLOGY

WATER QUALITY

CATEGORY OF 
DRIVER O/E-SCORE in RIFFLE No change Change 1 Change 2 Change 3

Rainfall (annual mean) <2.65 per day (965 year) >2.65 (965)
Temp max (annual mean) <19 >19
Temp min (annual mean) <7 >7

Water Temperature <13 >13
EC 0-147 147-350 350-800 >800

Flow (annual mean) 249 249 - 400 400-800 >800
High Flow (10th Year) <10.5 10.5-30 30-60 >60

Granite 0-5% 5-10% 10-50% 50-70%
Other 0-3% 3-10% 10-40% 0.40%

LANDSCAPE Elevation <482 482-674 674-872 >872

CLIMATE

LANDUSE GEOLOGY

WATER QUALITY

HYDROLOGY

CATEGORY OF 
DRIVER Thermophobic Abundance in EDGE No change Change 1 Change 2 Change 3 Change 4

HABITAT Habscore <84 >84
CLIMATE Temp max (annual mean) <19 >19

WATER QUALITY EC 0-154 154-350 350-800 >800
Flow Percentile 0-40 40-87 > 87

Flow (annual CV) 2.30-4 4-6 > 6
LANDUSE GEOLOGY Agriculture <2 % 2-10% 10-50% 50 - 70% >70%

LANDSCAPE Elevation <600 600-682 >682

HYDROLOGY
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Table 27.  Categorisation of the best predictors associated with Thermophobic taxa 
relative abundance in riffle based on the estimated thresholds 

 
 

Table 28. Categorisation of the best predictors associated with the macroinvertebrate 
assemblage in edge based on the estimated thresholds 

 
 

Table 29. Categorisation of the best predictors associated with the macroinvertebrate 
assemblage in riffle based on the estimated thresholds 

 

 

4.4 Fish 

4.4.1 Approach 2: Background 

In addition to the macroinvertebrate ecological responses, various native fish species 
were also modelled. The fish community of the Upper Murrumbidgee catchment is 
severely degraded with only 12 native fish species present (Lintermans 2002). In 
combination with macroinvertebrate communities these remaining native fish are 
important indicators of freshwater ecosystem health.   

In the case of fish also, we conducted a bottom-up approach, which combined expert 
opinion with statistical tools (univariate). As with the macroinvertebrate models, only 
the best predictors related to the fish responses were used to structure the Bayesian 
Network. For fish, thresholds were not estimated; instead we used theoretical values 
selected from published literature, expert opinion and guidelines.   

CATEGORY OF 
DRIVER Thermophobic Abundance in RIFFLE No change Change 1 Change 2 Change 3

CLIMATE Rainfall (annual mean) <2.65 per day (965 year) >2.65 (965)
Water Temperature <12.5 >12.5

EC* 0-97 97-350 350-800 >800
HYDROLOGY Low Flow (90th Year) <5.5 5.5-95 > 95

LANDUSE GEOLOGY Sandstone NA
LANDSCAPE Elevation <549 549-744 744-902 >902

WATER QUALITY

CATEGORY OF 
DRIVER Whole Community in EDGE No change Change 1 Change 2 Change 3 Change 4

HABITAT Shading of River <3% 3-25% >25%
CLIMATE Temp max (annual mean) <19 >19

WATER QUALITY EC <70 70-120 >120
Low Flow (90th Year) <12 12-49 >49

Flow Percentile <19 19-46 46-70 >70
LANDUSE GEOLOGY Intense <2% 2-7% 2-7% 7-9% >9%

LANDSCAPE Elevation <700 >700

HYDROLOGY

CATEGORY OF 
DRIVER Whole Community in RIFFLE No change Change 1 Change 2 Change 3

HABITAT Periphyton <35% 35-65% 65-90% >90%
CLIMATE Rainfall (annual CV) <3 >3

WATER QUALITY Water Temperature <12 >12
HYDROLOGY High Flow (10th Year) 0-3 >3

LANDUSE GEOLOGY Volcsed 0-3% >3%
LANDSCAPE Elevation <700 >700
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4.4.2 Methods 

(i) Ecological response 

Data on the presence and absence of native fish and total species richness was 
collated for the study area. The fish species used in modelling and their respective 
presences and absences are listed in Table 30. 

(ii)  Environmental predictors 

Environmental predictor data were collected as outlined in the macroinvertebrate 
section. We collated data for predictor variables identified as important based on expert 
opinion. However, environmental data associated with smaller scale habitat predictors 
(e.g. tree cover) were not available. We removed highly correlated (>0.7) predictor 
variables. In total we used 14 environmental predictor variables in BRT modelling 
(Table 31). 

Unlike macroinvertebrates, the number of records of the response variables was 
sufficiently large relative to the predictor variables. Thus for fish, all categories of the 
predictors were modelled together. We produced eight models, one for each species 
plus and one for species richness. 

Table 30. Fish dataset description and environmental variables used in Boosted 
regression tree modelling 

Species Presences Absences  
Australian Smelt 30 226 
Golden Perch 34 222 
Macquarie Perch 44 212 
Mountain Galaxias 80 176 
Trout Cod 15 241 
Two-spined Blackfish 91 165 
Western Carp Gudgeon 30 226 

 

Table 31. Environmental predictors used in fish models.  

Variables are fully described in Appendix L. 
 
Environmental predictor variable 
ALTITUDE 
Agriculture 
Days.Cease-to-flow.Year. 
flow_cv365 
flow_perc10_365 
flow_perc90_365 
Intense 
Natural 
rainfall_cv365 
rainfall_mean365 
Temp 
tempmax_cv365 
tempmax_mean365 
Turbidity 
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(iii) Statistical methods  
We selected the environmental predictors to be used in Bayesian Networks by 
following the same approach we used for macroinvertebrates, using BRT modelling 
(see section 4.3.1(ii)). The presence or absence of fish were modelled in the form of 
logistic regression (after Elith, Leathwick & Hastie 2008) and species richness as a 
Poisson response type.  

Variables which explained greater than 10% (Table 32) were used in the Bayesian 
Network model for fish. Trout Cod and fish species richness were not included in the 
Bayesian network model because they had no environmental predictors that explained 
greater than 10% (Table 32). In addition, dissolved oxygen was also included in the 
Bayesian Network model because it is known to be an important limiting factor for 
native fish. The relationship of dissolved oxygen with the fish species modelled was 
based on expert opinion. 

4.4.3 Results  

All BRT models for the fish species explained more than 50% of the variation in fish 
occurrence, except for Trout Cod (Table 32). Model performance was good for all 
species with cross-validated ROC scores of over 0.7 (Table 32). Altitude (Elevation) 
was consistently the variable of most relative importance (Table 32). Environmental 
variables relating to land cover (Agriculture and Natural), flow variability (flow_cv365), 
rainfall mean and variability (rainfall_mean365 and rainfall_cv365) and Temperature 
(tempmax_mean365), were also important predictor variables (Table 32).  
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Figure 42. Partial plots from boosted regression tree models for the two most influential 
environmental predictor variables for each fish species modelled  

All species, except Two-spined Blackfish and Mountain Galaxias, had a negative 
relationship with the variable ‘Altitude’, declining as altitude increased (Figure 42(a)). 
Similarly the fish species examined, except for Western Carp Gudgeon, had a negative 
relationship with Temperature (tempmax_mean365), with lower likelihood of 
occurrence as tempmax_mean365 increased (Figure 42). Macquarie Perch had a 
positive relationship with both the variables ‘Agricultural’ and ‘Natural land cover’. The 
positive relationship with agricultural land cover is likely influenced by one area in the 
catchment with high agricultural cover (Figure 42(c)).  
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Table 32. Importance of environmental predictor variables as a percentage explained by 
each within BRT models. In bold are variables contributing >10%, which were used in the BN 
for fish.  

 Australian 
Smelt 

Golden 
Perch 

Macquarie 
Perch 

Mountain 
Galaxias 

Trout 
Cod 

Two-
spined 

Blackfish 

Western 
Carp 

Gudgeon 

Fish 
species 
richness 

ALTITUDE 30.24 37.69 9.48 22.44 5.61 18.20 28.84 18.63 
Agriculture 2.37 0.72 15.57 5.70 3.27 11.94 3.56 1.01 
Days.Cease 
to flow..Year. 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
flow_cv365 1.88 0.43 8.04 18.82 5.72 24.91 1.32 7.68 
flow_perc10
_365 

0.78 0.74 1.55 0.91 1.08 1.38 0.28 1.42 
flow_perc90
_365 

0.63 0.03 1.29 1.14 0.90 1.11 0.16 2.24 
Intense 0.19 1.02 0.02 0.02 0.77 0.01 2.72 0.02 
Natural 7.42 3.21 10.26 11.65 2.33 6.79 4.13 3.88 
rainfall_cv36
5 

6.02 0.98 5.22 2.62 6.67 12.18 2.77 3.30 
rainfall_mea
n365 

4.35 1.50 6.87 2.54 8.46 9.21 2.28 4.61 
Temp 2.16 0.22 2.66 2.46 0.16 6.63 1.41 2.83 
tempmax_cv
365 

1.32 0.11 3.03 0.36 0.11 0.67 0.44 0.47 
tempmax_m
ean365 

12.02 20.52 6.39 3.28 8.67 4.91 21.53 9.14 
Turbidity 0.01 0.23 0.01 1.34 0.14 0.18 0.16 0.37 

  

Table 33. Performances of the BRT models for the fish species 

 Australian 
Smelt 

Golden 
Perch 

Macquarie 
Perch 

Mountain 
Galaxias 

Trout 
Cod 

Two-
spined 

Blackfish 

Western 
Carp 

Gudgeon 

Fish 
species 
richness 

Mean 
explained 
(%) 

69.4 67.4 70.4 73.3 43.9 98.1 69.6 55.6 

Mean total 
deviance 

0.723 0.783 0.918 1.242 0.446 1.302 0.723 0.248 
Mean 
residual 
deviance 

0.221 0.255 0.272 0.332 0.249 0.025 0.22 0.11 

Estimated 
cv 
deviance 
(se) 

0.438 
(0.053) 

0.402 
(0.047) 

0.604 
(0.034) 

0.648 
(0.048) 

0.396 
(0.041) 

0.31 
(0.055) 

0.453 
(0.052) 

0.186 
(0.016) 

Training 
data 
correlation 

0.872 0.849 0.899 0.912 0.698 0.999 0.879 0.783 

CV 
correlation 
(se) 

0.618 
(0.074) 

0.721 
(0.041) 

0.622 
(0.035) 

0.739 
(0.03) 

0.224 
(0.078) 

0.903 
(0.017) 

0.581 
(0.074) 

0.484 
(0.069) 

Training 
data ROC 
score 

0.992 0.987 0.994 0.992 0.983 1 0.993 – 

CV ROC 
score (se) 

0.928 
(0.025) 

0.956 
(0.013) 

0.885 
(0.018) 

0.926 
(0.013) 

0.776 
(0.058) 

0.991 
(0.004) 

0.993 
(0.015) 

– 
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4.5 Synthesis and conclusions 

• We used a bottom-up approach to select predictors for both fish and 
macroinvertebrates Bayesian Network (BN) models. This resulted in a limited 
numbers of drivers which were strongly related to the ecological responses. 
This reduction in predictor variables allowed us to construct parsimonious BNs 
and make full use of available data. 

• The predictor variables which were selected varied between ecological 
responses (macroinvertebrates and fish) and between edge and riffle 
(macroinvertebrates). This is important for management, because it highlights 
the specificity and diversity of relationships in freshwater ecosystems. This also 
highlights the need to be clear about objectives and endpoints for predictive 
modelling.  

• Using macroinvertebrates, threshold values across methods were generally 
similar, despite focusing on different community measures.  

• The discretisation of the continuous predictor variables for macroinvertebrate 
BN models was based on statistically derived thresholds. For fish, the 
discretisation of the BN was based on expert opinion, literature, guidelines and 
data distribution. However, both approaches were valid and provided useful 
information (see Section 6). They represent different ways of addressing the 
problem. For macroinvertebrates, the discretisation of the variables was less 
practical than for fish, because the habitat requirements of macroinvertebrates 
are less clearly understood and thresholds of response within the Upper 
Murrumbidgee catchment have been questioned by local agency staff. 
Therefore, we tried to fill this knowledge gap by identifying locally relevant and 
specific thresholds of macroinvertebrate community responses in the catchment 
under future scenarios. 

• Water quality and hydrological characteristics were identified as important 
predictor variables. However, the magnitude of the relationship and the 
important predictor variables differed based on the response. Therefore 
indicators of the community (e.g. O/E scores), may not be relevant to others 
(e.g. Thermophobic taxa relative abundance). It is good to have alternative 
methods for threshold identification, such as TITAN and LINKTREE, which take 
into account the Whole community.  

• Comparing empirically derived thresholds against theoretical values is good 
practice, but not very common (Huggett 2005). Recently, debate about 
thresholds has grown because of its implications for management 
(Lindenmayer & Luck 2005; Bestelmeyer 2006). Despite this, most thresholds 
still come from a theoretical framework or from historical data distributions (as is 
the case with the ANZECC guidelines). Empirical thresholds cater specifically to 
the ecological response of interest and therefore may be of more use than 
general guidelines, particularly when it comes to the need to predict responses. 
The disadvantage of using empirically derived thresholds from a management 
perspective is that they are specific to a single ecological response and unless 
there is co-incidence across ecological responses and across regions the 
implementation within guidelines becomes complicated. However, empirically 
derived thresholds can help refine the theoretical thresholds as proposed in the 
ANZECC guidelines.  
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5. THE BAYESIAN NETWORK 

In this section we outline the construction of the Bayesian network that links the projected 
water quality and quantity changes with ecosystem changes.  The structure of the models 
is described, as is the discretisation of each node in the network. The section concludes 
with an assessment of key uncertainties and limitations of the networks. 

5.1 Bayesian Network structure and features 

We used the commercially available software package NeticaTM Version 4.16 (Norsys 
Software Corporation, Vancouver, Canada, 2007) to construct the Bayesian Networks 
(BNs) and model causal relationships between multiple environmental factors, 
including climate change and management scenarios, environmental attributes, water 
quality attributes and macroinvertebrate populations and native fish species. 

5.1.1 Node selection and development 
We constructed six macroinvertebrate models (Figures 43–48) which represented both 
edge and riffle communities separately, and a single native fish models (Figure 49). 
Edge and riffle macroinvertebrate communities were modelled separately because the 
influencing environmental variables (as defined externally from the BNs, see Section 4) 
differed between the two. 

All models contained the primary input nodes Region, Climate Scenario and 
Management Scenario. All models also contained the intermediate node Flow 
Distribution because of its use in defining water quality changes with climate (see 
Section 3). Other nodes in each of the BNs were selected based on the strength of 
their influence on the response variable, as calculated externally from the BNs (see 
Section 4). Other intermediate nodes were model dependent, and selected based on 
the analysis of the key drivers (see Section 4). 

5.1.2 Formation of node states 

To enable parameter relationships to be analysed, each node in the BN was allocated 
a series of discrete “states” in a summary table (McCann, Marcot & Ellis 2006). For 
parent (input) nodes, each of these states had a “prior” (expected) probability 
associated with it (Morawski 1989). For each child (intermediate or output) node, a 
conditional probability distribution was calculated for each combination of values of the 
parent nodes. Data were converted to text files and imported into the BN. Using these 
data, Bayesian learning was used to determine the relationships between parent and 
child nodes to populate the conditional probability tables (Marcot et al. 2006).  

In Netica, Bayesian learning uses an expectation maximization algorithm to iteratively 
process data until model fit is maximised or the desired number of iterations is reached 
(Norsys 2007). Following Bayesian learning, the relationships between variables were 
represented as probabilities in the conditional probability tables of the BN. Conditional 
probability tables are used in the BN to quantify the relationships between different 
variables (i.e. between the parent and child nodes; Smith et al. 2007).  

Section 4 above describes in detail the development of the thresholds we used in each 
of the nodes to develop node states, and Tables 34–36, at the end of this section, 
summarise the model nodes and their relative states. 
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Figure 43.  A compiled Bayesian Network macroinvertebrate model for O/E scores in riffle habitat. Model shown is an example only and represents 
all management scenarios and all regions and historical climate.  

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

4.54
1.07
7.70
7.27
11.9
4.76
5.40
0.37
6.84
1.66
0.64
6.63
2.51
4.06
10.4
5.88
17.2
1.23

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

8.44
8.44
8.44
8.44
66.2

Climate Scernario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

 100
   0
   0
   0
   0
   0
   0

Granite
0 to 0.05
0.05 to 0.1
0.1 to 0.5
0.5 to 0.7
0.7 to 1

69.2
2.30
12.2
1.82
14.5

0.19 ± 0.3

Other geology
0 to 0.03
0.03 to 0.1
0.1 to 0.4
0.4 to 0.7
0.7 to 1

85.9
5.72
5.40
1.18
1.82

0.052 ± 0.14

Elevation (m)
360 to 482
482 to 674
674 to 872
872 to 1360

10.5
47.1
22.9
19.4

711 ± 240

Effluent Controls
Baseline scenario
TDS reduction
Upgrade LMWQCC
Membrane filtration
Salt and Sewerage

99.7
.075
.075
.075
.075

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

 1.0
9.00
80.0
9.00
 1.0

50.1 ± 29

HF days per year
0 to 10.5
10.5 to 30
30 to 60
60 to 366

24.5
24.8
25.9
24.8

70.8 ± 94

Mean daily flow (1 year)
0 to 249
249 to 400
400 to 800
800 to 8000

53.4
15.0
17.5
14.1

842 ± 1700

Water temperature
0 to 13
13 to 32

50.6
49.4

14.4 ± 9.3

Mean annual rainfall
0 to 965
965 to 3500

74.3
25.7

933 ± 880

Mean min daily temp (1 year)
0 to 7
7 to 22

60.2
39.8

7.87 ± 6.2

Mean max daily temp (1 year)
11 to 19
19 to 35

30.4
69.6

23.4 ± 6.8

OE Response (Riffle)
0 to 0.4
0.4 to 0.8
0.8 to 1.4

19.1
31.8
49.1

0.769 ± 0.38

EC (uS/cm)
0 to 30
30 to 147
147 to 390
390 to 420
420 to 800
800 to 2200

20.7
61.5
11.9
1.05
4.02
0.85

131 ± 190
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Figure 44.  A compiled Bayesian Network macroinvertebrate model for O/E scores in edge habitat. Model shown is an example only. Results 
represent all regions, management scenarios and climate scenarios. 

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

4.54
1.07
7.70
7.27
11.9
4.76
5.40
0.37
6.84
1.66
0.64
6.63
2.51
4.06
10.4
5.88
17.2
1.23

Effluent Controls
Baseline scenario
TDS reduction
Upgrade LMWQCC
Membrane filtration
Salt and Sewerage

99.7
.075
.075
.075
.075

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

8.44
8.44
8.44
8.44
66.2

Climate Scernario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

14.3
14.3
14.3
14.3
14.3
14.3
14.3

Elevation (m)
300 to 600
600 to 1400

37.0
63.0

796 ± 330

Intensive land use
0 to 0.02
0.02 to 0.1
0.1 to 0.5
0.5 to 1

81.9
4.76
2.46
10.9

0.1 ± 0.24

Cover of riparian zone by shrubs
0 to 23
23 to 60
60 to 100

51.4
32.9
15.7

32.1 ± 26
EC (uS/cm)

0 to 30
30 to 118
118 to 350
350 to 390
390 to 420
420 to 800
800 to 1650

14.5
53.5
23.2
1.41
1.09
5.28
1.08

151 ± 190

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.71
5.37
79.1
12.1
2.70

54.1 ± 29

CTF days per year
0 to 20
20 to 43
43 to 80
80 to 366

86.1
3.78
3.64
6.49

26.5 ± 57

Mean daily flow (1year)
0 to 100
100 to 300
300 to 500
500 to 3200

57.0
17.9
9.74
15.3

386 ± 700

Mean max daily temp (1 year)
0 to 19
19 to 21
21 to 27

8.16
41.9
49.9

21.1 ± 4.4

OE response (Edge)
0 to 0.4
0.4 to 0.8
0.8 to 1.4

12.7
30.6
56.7

0.833 ± 0.36

DO (mg/L)
0 to 6
6 to 7.44
7.44 to 9
9 to 15

4.01
5.70
17.7
72.6

10.7 ± 2.8
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Figure 45. A compiled Bayesian Network of the macroinvertebrate community indicator model for riffle habitat. Model shown is an example only. 
Results represent all regions, management scenarios and climate scenarios. 

 

Elevation (m)
360 to 700
700 to 1360

64.5
35.5

708 ± 280

 Volcsed
0 to 0.03
0.03 to 1

84.5
15.5

0.0925 ± 0.21

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.71
5.37
79.1
12.1
2.70

54.1 ± 29

HF days per year
0 to 3
3 to 366

22.3
77.7

144 ± 120

Daily rainfall variability (1 year)
0 to 3
3 to 8

57.0
43.0

3.22 ± 2.3

Water temperature
0 to 12
12 to 30

32.4
67.6

16.1 ± 8.5

% cover of reach by Riffle Periphyton
Up to 35 percent
Above 35 percent

60.8
39.2

2.48 ± 1.4

Gripopterygidae (P)
0 to 2
2 to 10
10 to 100

50.4
26.1
23.5

15 ± 26

Conoesucidae (T)
0 to 2
2 to 10
10 to 100

64.6
25.2
10.2

7.77 ± 18

Leptophlebiidae (E)
0 to 2
2 to 10
10 to 100

39.1
24.3
36.6

22 ± 30

Scirtidae (Coleoptera)
0 to 2
2 to 10
10 to 100

94.5
4.79
0.73

1.63 ± 5.2

Chironomidae (Diperta)
0 to 2
2 to 10
10 to 100

1.12
24.0
74.8

42.6 ± 31

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

4.54
1.07
7.70
7.27
11.9
4.76
5.40
0.37
6.84
1.66
0.64
6.63
2.51
4.06
10.4
5.88
17.2
1.23

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

8.44
8.44
8.44
8.44
66.2

Climate_Scenario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

14.3
14.3
14.3
14.3
14.3
14.3
14.3
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Figure 46. A compiled Bayesian Network of the macroinvertebrate community indicator model for edge habitat. Model shown is an example only 
and represents the Yass region. 

Intensive land use
0 to 0.02
0.02 to 0.07
0.07 to 0.09
0.09 to 1

72.3
8.51
4.26
14.9

0.0956 ± 0.21

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

 100
   0
   0
   0
   0
   0

Effluent Controls
Baseline scenario
TDS reduction
Upgrade LMWQCC
Membrane filtration
Salt and Sewerage

 100
   0
   0
   0
   0

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

   0
   0
   0
   0

 100

Climate_Scenario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

14.3
14.3
14.3
14.3
14.3
14.3
14.3

 % Shading of river
Less than 3
Between 3 and 25
Between 25 and 100

2.04
46.9
51.0

2.38 ± 1.3

Elevation (m)
360 to 700
700 to 1360

95.7
4.26

551 ± 140

EC (uS/cm)
0 to 70
70 to 120
120 to 390
390 to 420
420 to 600
600 to 1650

46.9
24.1
23.5
1.11
2.65
1.81

137 ± 180

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.67
6.52
91.4
1.29
0.14

47.4 ± 26

LF days per year
0 to 12
12 to 49
49 to 366

31.8
51.9
16.3

51.6 ± 79

Mean max daily temp (1 year)
0 to 19
19 to 40

 0 +
 100

29.5 ± 6.1

Gripopterygidae (P)
0 to 2
2 to 10
10 to 100

53.1
33.2
13.7

10 ± 20

Leptophlebiidae (E)
0 to 2
2 to 10
10 to 100

78.3
14.1
7.63

5.82 ± 16

Leptoceridae (T)
0 to 2
2 to 10
10 to 100

54.4
32.6
13.0

9.65 ± 20

Elmidae (Coleoptera)
0 to 2
2 to 10
10 to 100

84.6
11.4
3.99

3.72 ± 12

Oligochaeta (worms)
0 to 2
2 to 10
10 to 100

4.68
19.5
75.8

42.9 ± 31
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Figure 47. A compiled Bayesian Network macroinvertebrate model of Thermophobic taxa relative abundance in riffle habitat. Model shown is an 
example only and represents all regions, no management scenarios and historical climate. 

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

 1.0
9.00
80.0
9.00
 1.0

50.1 ± 29

EC (uS/cm)
0 to 97
97 to 350
350 to 390
390 to 420
420 to 800
800 to 2200

64.1
29.9
1.11
1.03
3.26
0.61

135 ± 180

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

6.86
1.61
11.6
2.20
3.58
7.18
8.15
0.56
2.07
2.50
0.97
10.0
3.79
6.13
3.13
1.78
26.0
1.86

Sandstone
0 to 0.25
0.25 to 0.5
0.5 to 0.75
0.75 to 1

70.2
8.57
10.5
10.7

0.279 ± 0.27

Elevation (m)
360 to 549
549 to 744
744 to 902
902 to 1360

12.5
61.0
12.1
14.4

714 ± 210

Effluent Controls
Baseline scenario
TDS reduction
Upgrade LMWQCC
Membrane filtration
Salt and Sewerage

99.5
0.11
0.11
0.11
0.11

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

   0
   0
   0
   0

 100 Climate Scernario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

 100
   0
   0
   0
   0
   0
   0

Water temperature
0 to 12.5
12.5 to 35

47.9
52.1

15.4 ± 10

LF days per year
0 to 25
25 to 108
108 to 365

47.8
47.8
4.46

48.3 ± 54

Mean annual rainfall
0 to 965
965 to 3500

73.2
26.8

951 ± 900

Thermophobic Abundance (Riffle)
0 to 1
1 to 5
5 to 20
20 to 100

22.8
18.1
28.0
31.1

22.8 ± 29
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Figure 48. A compiled Bayesian Network macroinvertebrate model of Thermophobic taxa relative abundance in edge habitat. Model shown is an 
example only. Results represent all regions, management scenarios and climate scenarios. 

Thermophobic Abundance (Edge)
0 to 1
1 to 5
5 to 20
20 to 100

40.5
21.7
31.8
6.04

8.45 ± 15

Agriculture
0 to 0.02
0.02 to 0.1
0.1 to 0.5
0.5 to 0.7
0.7 to 1

49.3
9.03
13.0
8.34
20.4

0.272 ± 0.34

Elevation (m)
360 to 600
600 to 682
682 to 1360

37.0
21.8
41.2

738 ± 280

EC (uS/cm)
0 to 70
70 to 120
120 to 390
390 to 420
420 to 600
600 to 2200

49.2
21.9
22.3
1.14
3.36
2.15

147 ± 230

Habitat score
0 to 84
84 to 300

30.7
69.3

146 ± 88

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

4.54
1.07
7.70
7.27
11.9
4.76
5.40
0.37
6.84
1.66
0.64
6.63
2.51
4.06
10.4
5.88
17.2
1.23

Effluent Controls
Baseline scenario
TDS reduction
Upgrade LMWQCC
Membrane filtration
Salt and Sewerage

99.7
.075
.075
.075
.075

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.71
5.37
79.1
12.1
2.70

54.1 ± 29

Flow variability (1 year)
0 to 2.3
2.3 to 4
4 to 6
6 to 15

70.3
20.5
5.01
4.14

2.14 ± 2.2

Mean max daily temp (1 year)
0 to 19
19 to 40

8.16
91.8

27.9 ± 8.1

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

8.44
8.44
8.44
8.44
66.2

Climate Scernario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

14.3
14.3
14.3
14.3
14.3
14.3
14.3
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Figure 49. A compiled Bayesian Network model for fish. Model shown is an example only and represents the Upper Cotter region, no management 
actions and a minor change in climate with a 1ºC temperature increase. 

 

Daily rainfall variability (1 year)
0 to 3
3 to 4.25
4.25 to 7

91.3
7.83
0.87

1.7 ± 1.1

Agriculture
0 to 0.2
0.2 to 0.6
0.6 to 1

 100
 0 +
 0 +

0.1 ± 0.058

Natural
0 to 0.3
0.3 to 0.6
0.6 to 1

 100
 0 +
 0 +

0.15 ± 0.087

DO (mg/L)
0 to 4
4 to 100

64.3
35.7

19.9 ± 29

Elevation (m)
360 to 700
700 to 1360

26.4
73.6

898 ± 280

Mean max daily temp (1 year)
0 to 19
19 to 21
21 to 30

4.41
64.0
31.6

21.3 ± 4.1

 Flow variability (1 year)
0 to 1
1 to 2
2 to 3
3 to 12

21.7
71.7
6.09
0.43

1.37 ± 0.73

Climate_Scenario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

   0
   0
   0
   0
   0

 100
   0

Region
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee

   0
 100

   0
   0
   0
   0
   0
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   0
   0
   0
   0
   0
   0
   0

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

   0
   0
   0
   0

 100

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.59
3.47
79.6
13.8
2.58

55.6 ± 29

Macquarie Perch
Present
Absent

9.09
90.9

0.0909 ± 0.29

Two-spined Blackfish
Present
Absent

86.3
13.7

0.863 ± 0.34

Australian Smelt
Present
Absent

4.89
95.1

0.0489 ± 0.22

Mountain_galaxias
Present
Absent

6.12
93.9

0.0612 ± 0.24

Western Carp Gudgeon
Present
Absent

7.15
92.8

0.0715 ± 0.26

Golder Perch
Present
Absent

4.12
95.9

0.0412 ± 0.2
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5.1.3 Primary input nodes (all models) 

(i) Region 

We identified a total of 18 regions in the Upper Murrumbidgee catchment: Ginninderra, 
Cooma, Paddys, Bredbo, Numeralla, Yass, Upper and Lower Cotter, Mid and Upper 
Murrumbidgee, Lower, Mid and Upper Molonglo, Queanbeyan, Tuggeranong, 
Goodradigbee, Gudgenby and Burrinjuck. Section 3 above discusses the 
regionalisation of the study area.  

These regions formed the 18 states of the Region node, which was the primary input 
node for all BN models. This enabled regional analysis of the data using the BNs, 
which was deemed the most practical option from a management perspective. Through 
selecting a region in the Region node, only values for this region would be shown in all 
nodes of the model. Region directly influenced all flow and environmental variables 
(Figures 43–49). 

(ii) Climate Scenario 

In the conceptual models, environmental input variables such as mean daily rainfall, 
pan evaporation, mean daily maximum air temperature and bushfire impact were 
shown separately, as was the parameter ‘water demand’. In developing the BNs, we 
used these parameters in the external hydrological modelling (see Section 3), with flow 
time series produced for each of the states of the parent node Climate Scenario. 
Modelled data for sample sites across the Upper Murrumbidgee were sourced from 
ACTEW, and from iCAM (a research group at the ANU) using data sourced from 
SEACI (South Eastern Australia Climate Initiative), and from BoM (Bureau of 
Meteorology) databases (BoM 2012). 

Of the 31 climate scenarios that were calculated using external hydrological models, 
we chose six for input into the BN models. These climate change scenarios 
represented minor, moderate and major changes in flow conditions (Section 3). The 
scenarios formed six of the seven states of the Climate Scenario input node, and we 
used them to investigate the impact of different climate scenarios on water quality and 
ecological responses. The seventh default value, “historical”, was also included to 
enable a comparison of predicted climate scenarios for historical climate conditions 
(see Table 34). In the BN, the Climate Scenario node influenced water and air 
temperature and all flow nodes.  

The BNs were not constructed to enable assessment of the impact of extreme events, 
such as long term droughts, high intensity storms (rainfall values of very high intensity) 
or floods (suspended high rainfall frequency). We considered the possibility of including 
extreme events, such as major storms, but did not include them in the final model 
because of possible incompatibility with climate scenarios. Inclusion of extreme events 
in the modelling framework is the subject of further research by the project team.  

(iii) Management Scenarios 

The Management Scenarios node was used to encompass the effect on flow of the 
four management adaptation alternatives we had devised (see Section 2z). 
Management alternatives affected flow management in the catchment, and they could 
be investigated under different climate scenarios in the BN.  

The four future management alternatives vary human water supply and demand and 
flow regime (see Section 2.4 and Figure 10), and a fifth option (no action taken) 
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represents current management practice. The management alternatives are relevant to 
five regions only (Mid and Upper Murrumbidgee, Upper and Lower Cotter and 
Queanbeyan) and represent the regulated rivers of the catchment. The Management 
Scenarios node formed a primary input node into all flow nodes (Table 34;  
Figures 43–49). 

(iv) Effluent Control  
Management options which directly related to water quality were identified separately in 
the BN. Effluent control options and their potential effects on water quality were 
sourced from the Canberra Sewerage Strategy 2010–2060 (ActewAGL 2011) (see 
Section 2). The influence of the Effluent Control node was therefore inherently 
regionalised to the sampling locations close to the effluent output site in the Lower 
Molonglo region only. 

The Effluent Control node impacted directly on the water quality node containing 
electrical conductivity values (given in the Electrical Conductivity node). The Effluent 
Control node included five management options, which were used to develop node 
states:  

two different sewage treatment options (the use of a bioreactor or membrane filtration 
for nutrient removal, and an upgrade to the LMWQCC to improve water quality),  

reduction in total dissolved solids output,  

a combination of salt and sewage control, and  

a baseline of the current system output (see Section 2).   

Each option was defined by its impact on electrical conducivity. The implementation of 
a bioreactor or membrane filtration, an upgrade to the LMWQCC or reduction in total 
dissolved solids output to improve water quality, reduced electrical conductivity below 
420 µS/cm. The combination of sewerage upgrade and salt removal reduced electrical 
conductivity below 390 µS/cm. The baseline scenario reflected the current sewage 
treatment and electrical conductivity values in the river and was the default value for all 
other regions. 

5.1.4 Intermediate nodes (Model specific) 
We assessed a total of 95 riffle and 82 edge variables for their relevance and impact on 
the selected ecological responses (outlined above in Section 4 and in Appendix L). 
Only the most influential variables were selected for the BN models. Variables 
therefore differed in each model depending on the ecological response they were 
associated with (see Section 4). 

(i) Flow Distribution 

The Flow Distribution node was the only intermediate node used in all BNs. The Flow 
Distribution node was used to link the strong interaction between flow and water quality 
attributes under different climate scenarios. For discretisation in the BN, we selected 
five categories of flow distribution:  

• very low flow (equivalent to the 99th percentile flow from the historical flow time 
series);  

• low flow (equivalent to the 90<99th percentile flow from the historical flow time 
series);  
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• intermediate flow (equivalent to the 10<90th percentile flow from the historical flow 
time series);  

• high flow (equivalent to the 1<10th percentile flow from the historical flow time 
series); and  

• very high flow (equivalent to the 1st percentile flow from the historical time series). 

Percentile flows were defined as being the percentage of time a particular stream flow 
was equalled or exceeded, using values from the historical flow records at the sampling 
sites. Hence the 99th percentile flow was equalled or exceeded 99% of the time, thus 
representing very low flows. Defining the flow categories based on percentile flows 
from the historical time series effectively standardises the data from rivers of differing 
size. 

The Flow Distribution node was a child node of the primary input nodes Region, 
Management Scenario and Climate Scenario, so that the impact of management and 
climate scenarios on flow (and thus water quality) could be investigated separately or in 
combination with each other for each region. The conditional probability tables of the 
Flow Distribution node were based on externally modelled data that captured the 
impact of management alternatives and climate scenarios on flow. This modelled data 
was then entered directly into the BN to populate the conditional probability table of the 
Flow Distribution node.  

(ii) Other Flow nodes 

Other model-specific nodes which captured the change in flow included:  
the  
Cease-to-flow node (the number of days cease-to-flow occurred in a year),  

High and Low Flow nodes (the number of days of high and low flow in a year),  

Flow Variability (the variability of flow across a defined period of time, including three 
months, six months or a year, calculated using the coefficient of variation), and  

Mean Annual Flow (which was the average daily flow over one year).  

Each of these flow nodes was a child node of the primary input nodes Region, 
Management Scenario and Climate Scenario, so that once again the impact of 
management alternatives and climate scenarios on changes in flow attributes could be 
investigated by region, which was deemed a more management orientated approach.  

We modelled the data for input into flow nodes separately from the BN, because the 
impact of management alternatives and climate scenarios on the different flows 
required external calculation. Then we imported these calculations into a smaller 
subset BN, which included Region, Management Scenario and Climate Scenario, as 
well as flow nodes.  

We used this small sub-set of nodes from the BN to learn the relationship between 
these nodes and to calculate conditional probability tables of the flow nodes which we 
then copied into the final BN models. In the final models, flow nodes were directly 
linked to the ecological response node of the model.  

Thresholds that were used to discretise flow node states were calculated externally 
(see Section 4) and were dependent on ecological response. 
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(iii) Water and Air Temperature 

Air temperature changes under different climate scenarios were captured in the Mean 
Maximum and Mean Minimum Daily Temperature nodes. Water temperatures were 
captured in the Water Temperature node. Data input into temperature nodes included 
historical temperature records for each region, with an added 1ºC or 2ºC depending on 
the relevant climate scenario.  

We used a smaller BN, created using only the Region, Climate Scenario and 
Temperature nodes, to learn the relationships between these nodes and calculate the 
conditional probability tables. The raw data for modelled temperature was imported into 
this smaller sub-set of nodes from the whole BN model, and the outputs were then 
used to populate conditional probability tables of the temperature nodes in the final BN 
models. Temperature nodes were directly linked to the ecological response node of the 
model. Section 4 outlines the calculation of the thresholds we used to determine 
temperature node states in the final models. 

(iv)  Rainfall 
Rainfall nodes included Mean Annual Rainfall (calculated from historical records and 
modelled records for each region) and Rainfall Variability (the coefficient of variation 
value for rainfall over 365 days). Rainfall nodes were child nodes of both the Region 
and Climate Scenarios nodes, and were a parent node to the ecological response. We 
modelled climate scenario impacts on rainfall, separately from the BN, as a time series 
by region. The raw data for modelled rainfall was then imported into a smaller sub-set 
of nodes from the whole BN model, including Region, Climate Scenario and Rainfall 
nodes, to learn the relationship and calculate the conditional probability tables for the 
rainfall nodes. These outputs were then used to populate conditional probability tables 
of the relevant nodes in the final BN models. We externally calculated the thresholds 
that were used to discretise flow node states (see Section 4); they differed for each 
final BN model in which rainfall nodes occurred. 

(v) Water Quality  
Each of the seven models contained different water quality nodes, because of the 
impact of different water quality variables on ecological response. Water quality 
parameters used in the final models included electrical conductivity (EC), dissolved 
oxygen (DO), and Water Temperature (see description above). Water quality nodes 
were child nodes of Flow Distribution; therefore data records for water quality values 
(1872 in total) were matched to the relevant flow percentiles at the time and location of 
data collection. Section 4 above outlines the calculation of thresholds used to develop 
water quality node states. 

5.1.5 External Environment nodes 

(i)  Land Use  
Land use and geology was calculated as a percentage of the catchment area that each 
sampling site was within. Catchment areas were calculated using the watershed 
function within Arc View 9.3.1 (ESRI 2009) and a 25 m digital elevation model (LPI - 
NSW Department of Finance and Services, 2006). The proportion of different land uses 
was calculated using ArcMap GIS Version 9.3. GIS layers and shape files of land use 
were sourced from Land Use of Australia, Version 4, 2005-06 (ABARES-BRS 2010) 
(Appendix M). 
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For the purpose of the BN, we defined four categories of land use:   

• Natural (conservation areas, forested and natural environments), 

• Agriculture (dominated by grazing and cropping), 

• Intensive  (Urban and industrial), 

• Water. 

Only the Intensive and Agriculture land uses were found to be important for 
invertebrate response; we therefore included them in the final BN models. The land use 
‘Natural’ was included in the fish model.  

Each land use node was a child node of Region and a parent node of ecological 
response, which enabled regional investigation of ecological response to land use. 
Because land use was calculated as a proportion of total land use, values for the node 
were between 0 and 1. Thresholds for land use were calculated externally from the BN 
to form node states (see Section 4). 

(ii) Geology 

Similar to land use, the type and proportion of different geology within each sampling 
station catchment area was calculated using ArcMap GIS Version 9.3. Four types of 
geology were used in final BN models:  

• Volcsed,  

• Sandstone,  

• Granite and  

• Other Geology (this was used to describe highly heterogeneous areas with a 
mixture of geological types) (see Appendix L).  

Being a calculated proportion, values for the geological nodes were between 0 and 1. 
Each Geology node was a child node of Region and directly impacted on the ecological 
response node. Thresholds for geological node states were model specific and 
calculated externally (see Section 4). 

(iii)  Elevation 

The Elevation (altitude) node indicated the proportion of sites above or below the 
threshold of elevation (metres above sea level) in a given region. It was therefore a 
child node of the Region node. The threshold used in the Elevation node was 
calculated externally and differed between models. Elevation was a parent node to the 
ecological response node. 

(iv)  Habitat 
Three habitat nodes, Habscore (habitat score), Shrubs (the proportion of shrubs under 
10 m) and Shading of River (%) were used in the final BNs (see Appendix L). The 
Habscore node included values ranging from 0 to 300, while the Shrubs and Shading 
of River (%) nodes, as a percentages, included values between 0 and 100. Habitat 
nodes were child nodes of Region and impacted directly on ecological response. As 
with other nodes, thresholds used to determine states in habitat nodes were calculated 
externally. 
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5.1.6 Ecological response nodes (output) 
Each of the six macroinvertebrate BNs had different ecological response nodes. 
(Section 4 outlines the process of selecting ecological responses.) Models were 
separated into edge and riffle models, with three models representing each aquatic 
habitat. General response nodes for four of the models included O/E scores (observed 
(O) to expected (E) scores in AUSRIVAS) for both edge and riffle models (Figures 43 
and 44), and Thermophobic taxa relative abundance for both edge and riffle models 
(Figures 47 and 48).  

For macroinvertebrate community indicator models, relevant variables and 
corresponding thresholds were assessed for the 42 most common macroinvertebrate 
species or categories (including invertebrate orders or groups) in edge and riffle 
communities. The most common macroinvertebrates selected were present in greater 
than 20% of data records and had a total relative abundance of >200 from 1872 data 
records.  

We used small BN models to determine the five most responsive macroinvertebrate 
species or categories for both edge and riffle habitats. In the final model (Figures 47 
and 48), we selected one species from each of the sensitive Ephemeroptera, 
Plecoptera and Trichoptera (EPT) orders, as well as one other species susceptible to 
change (Coleoptera species). The fifth macroinvertebrate selected was deemed a 
“common” macroinvertebrate that may respond positively to climate change: 
Oligochaeta (worms) and Chrionomidae (flies).  

The fish BN model contained six native fish species: (i) Two-spined Blackfish, (ii) 
Macquarie Perch, (iii) Mountain Galaxias (iv) Australian Smelt, (v) Golden Perch and 
(vi) Western Carp Gudgeon. The discretisation of these response nodes was based on 
the presence and absence of each species.  

5.2 Operation of BNs 

To explore scenarios and interactions between variables, we needed to select a given 
state (i.e. condition) for the input nodes Region, Management Scenarios and Climate 
Scenarios. For example, if a state within the Region node was not selected in the 
models, results displayed included data from all regions.  

Similarly, management scenarios were selected only in regions where management 
scenarios could be applied. Otherwise, the default “no action taken” was automatically 
shown for regions where management scenarios could not be applied.  

All climate scenarios were possible in all regions, so we needed to select the desired 
climate scenario; otherwise results reflected a blend of scenarios.  

Effluent options needed only to be selected in the region Lower Molonglo, and they 
were defaulted to “Baseline Scenario” in other regions.  

5.2.1 Disadvantages and limitations 

While BNs have numerous advantages for modelling ecological systems, there are 
some limitations that need to be considered. Two of the main disadvantages of BNs 
are the need to discretise continuous variables, and their inability to support feedback 
loops (Uusitalo 2007).  
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Generally the discretisation of continuous variables is undesirable (Pollino et al. 2007) 
and it may cause a loss in statistical power if the relationship being tested is in fact 
linear (Myallmaki et al. 2002). While feedback loops were not very relevant our model, 
we attempted to address the issue of discretisation of continuous variables through the 
calculation of model-specific thresholds (as outlined in Section 4). In instances where it 
was difficult to find discrete thresholds the BN was discretised based on the data 
distribution of the predictor variable of interest.  

When modelling ecosystems using a BN, it is impractical to factor in all variables in the 
model because the BN becomes too unwieldy. Instead, BNs are used to model major 
system components and links with the most relevant variables. Modellers need to 
acknowledge the existence of other, albeit more minor, elements that cannot be 
included, that may impact on results. In an attempt to reduce this limitation, in our 
models the most influential variables on ecological response were selected through 
external analysis (see Section 4).  

Finally, BN models are also limited by the data used to develop conditional probabilty 
tables. Where data are patchy or limited, the BN is more capable than other models to 
cope with such gaps. However, where data are non-existent for combinations within the 
conditional probabilty tables (for example, there may be no recorded ecological 
response for a low proportion of shrubs, high proportion of sandstone, high elevation 
and low flow, etc.), the BN will apply uniform probabilities to such combinations. As 
such these are distributions are generally uninformative and limit the ability of the 
model to predict patterns in situations where data is non-existent. 
Despite these limitations, BNs are becoming increasingly popular in the environmental 
and ecological sciences (Howes, Maron & McAlpine 2010). This may be a 
consequence of the numerous advantages they provide when dealing with high levels 
of uncertainty and variability which often characterise the data used to build models of 
ecological systems. 
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Table 34. Parent node descriptions and applicable models. Nodes have static states 
(non-threshold dependent) 

Parent Node Description States Applicable 
models 

Region Enabled regionalisation 
of data and BN findings. 
See Section 3 for 
regionalisation methods.  

*Ginninderra, *Cooma, 
Paddy’s, Upper Cotter, 
Lower Cotter, Upper 
Molonglo, Mid Molonglo, 
Lower Molonglo, 
Queanbeyan, Bredbo, 
Burrinjuck, Gudgenby, 
Yass, Numeralla, 
Goodradigbee, Mid 
Murrumbidgee, Upper 
Murrumbidgee, 
*Tuggeranong 

All models  
*Fish model does 
not include these 
regions because of 
data limitations 

Climate 
scenarios 

Provided input for 
climate change 
scenarios. Included six 
climate scenario 
models, three with 1ºC 
increase and three with 
2ºC increase in 
temperatures (see 
Section 3 for modelling 
methods). Historical 
temperature records 
were also included for 
comparison. 

Historical 
Major Change 1 
Major Change 2 
Moderate Change 1 
Moderate Change 2 
Minor Change 1 
Minor Change 2 

All models 

Management 
Scenarios 

Provided input for the 
impact of different flow 
management adaptation 
alternatives. Included 
four management 
alternatives (see Section 
2 for an outline) and a 
default option of no 
action taken. 

SM1 (C1) 
SM2 (C2) 
SM3 (C3) 
SM4 (C4) 
No action taken  

All models 
Management 
alternatives only 
applicable to 
regions Upper and 
Lower Cotter, 
Upper and Mid 
Murrumbidgee and 
Queanbeyan. 

Effluent 
Control 

Provided input for the 
impact of four different 
effluent treatment 
options in the Lower 
Molonglo region (at the 
LMWQCC) and a default 
value of baseline. For 
selection of effluent 
treatment options see 
Section 2. 

Baseline scenario 
Total dissolved solids 
reduction 
Upgrade LMWQCC 
Membrane filtration 
Salt and sewage control 

All models except 
Whole community 
(riffle) and Fish. 
Only applicable to 
the Lower Molonglo 
region. 
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Table 35. Intermediate node descriptions, states and applicable models.  
Appendix L gives more detailed descriptions. 

Intermediate 
Node 

Description States Applicable models 

Flow 
Distribution 

Flows based on 
percentile flows from 
the historical time 
series at each gauging 
station.  

Very high flow  
High flow 
Intermediate flow 
Low flow 
Very low flow 

All models 

HF days per 
year 

The number of days of 
high flow over one year 
(365 days).  

0–10.5, 10.5–30, 30–60, 
60–366 
0–3, 3–366 

AUSRIVAS O/E  
— Riffle habitat 
Macroinvertebrate 
community — Riffle 
habitat 

LF days per 
year 

The number of days of 
low flow over one year 
(365 days). 

0–25, 25–108, 108–366 
0–12, 12–49, 49–366 

Thermophobic 
abundance  
— Riffle habitat 
Macroinvertebrate 
community — Edge 
habitat 
 

CTF days per 
year 

The number of days of 
cease-to-flow over one 
year (365 days). 

0–20, 20–43, 43–80, 80–
366 

AUSRIVAS O/E  
— Edge habitat 

Daily flow 
variability (1 
year) 

The variability of daily 
flow over one year. 
Calculated using the 
coefficient of variation 
over 365 days. 

0–2.3, 2.3–4, 4–6, 6–15 Thermophobic 
abundance  
— Edge habitat  
Fish 

Mean daily 
flow  
(1 year) 

The average daily flow 
calculated over 365 
days. 

0–249, 249–400, 400–
800, 800–8000 
0–100, 100–300, 300–
500, 500–3000 

AUSRIVAS O/E  
— Riffle habitat 
AUSRIVAS O/E  
— Edge habitat 

Mean Max 
daily temp (1 
year) ºC 

The average maximum 
daily temperature at the 
sample site, calculated 
over 365 days. 

Varies between models 
but all models include a 
19 ºC threshold. 2–3 
states per model. 

All invertebrate 
models in edge 
habitat  
AUSRIVAS O/E  
— Riffle habitat 
Fish 

Mean Max 
daily temp (1 
month) ºC 

The average maximum 
daily temperature at the 
sample site, calculated 
over 30 days. 

8–19, 19–21, 21–40 Thermophobic taxa 
abundance — Riffle 
habitat 

Mean Min 
daily temp (1 
year) ºC 

The average minimum 
daily temperature at the 
sample site, calculated 
over 365 days. 

0–7, 7–22 AUSRIVAS O/E  
— Riffle habitat 

Daily Rainfall 
Variability (1 
year) 

Calculated using the 
co-efficient of variation 
for the mean daily 
rainfall for each 
sampling site. 

0–3, 3–8 Macroinvertebrate 
community — Riffle 
habitat 
Fish 

Mean Annual 
Rainfall (mm)  

Calculated using the 
mean daily rainfall for 
each sampling site and 
multiplying by 365 
days.  

0–965, 965–3500 AUSRIVAS O/E  
— Riffle habitat 
Thermophobic taxa 
abundance — Riffle 
habitat 
Fish 
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Intermediate 
Node 

Description States Applicable models 

Elevation (m) The proportion of land 
at a given elevation 
above sea level (by 
region). 

Discretisation of states 
varied between models, 
and included elevations 
between 300 and 1400 m 
(encompassing the whole 
study area). 2 to 4 states 
per model. 

All models 

Water 
temperature 
oC 

The temperature of the 
water taken at the 
sampling site during 
macroinvertebrate 
sampling  

0–13, 13–22 
 
0–12, 12–30 
 
0–12.5, 12.5–35 

AUSRIVAS O/E  
— Riffle habitat 
Macroinvertebrate 
community  
— Riffle habitat 
Thermophobic 
abundance  
— Riffle habitat 

EC (uS/cm) The salinity (electrical 
conductivity) value of 
the water taken at the 
sampling site during 
macroinvertebrate 
sampling 

Discretisation of states 
varied between models, 
and included EC values 
between 0 and 2200.  
6 to 7 states per model. 
Thresholds of 390 and 
420 were included to 
enable the effect of 
different effluent controls 
on salinity levels to be 
shown in the models. 

All invertebrate 
models,  
except  
Macroinvertebrate 
community  
— Riffle habitat 

DO (mg/L) The amount of 
dissolved oxygen in the 
water measured at the 
sampling site during 
macroinvertebrate 
sampling 

0–6, 6–7.44, 7.44–9, 9–
15 

AUSRIVAS O/E  
— Edge habitat 
Fish  

Agriculture 
(%) 

The proportion of land 
under agricultural land 
use, including grazing, 
cropping and 
horticulture, in the 
surrounding sub-
catchment above a 
sampling point 

0–2, 2–10, 10–50, 50–70, 
70–100 

Thermophobic 
abundance  
— Edge habitat 
Fish 

Natural (%) The proportion of land 
under natural land uses, 
including conservation 
reserves and State 
forests, in the 
surrounding sub-
catchment above a 
sampling point 

 Fish 

Intensive 
Land Use (%) 

The proportion of land 
under intensive land 
uses, including urban 
and industrial land use, 
in the surrounding sub-
catchment above a 
sampling point 

0–2, 2–7, 7–9, 9–100 
 
0–2, 2–10, 10–50, 50–
100 

Macroinvertebrate 
community  
— Edge habitat 
AUSRIVAS O/E — 
Edge habitat 
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Intermediate 
Node 

Description States Applicable models 

Sandstone 
(%) 

The percentage of 
sandstone bedrock in 
the surrounding sub-
catchment above a 
sampling point  

0–25, 25–50, 50–75, 75–
100 

Thermophobic 
abundance  
— Riffle habitat 

Volcsed (%) The percentage of 
volcsed bedrock in the 
surrounding sub-
catchment above a 
sampling point  

0–3, 3–100 Macroinvertebrate 
community  
— Riffle habitat 

Granite (%) The percentage of 
granite bedrock in the 
surrounding sub-
catchment catchment 
above a sampling point 

0–5, 5–10, 10–50, 50–70, 
70–100 

AUSRIVAS O/E — 
Riffle habitat 

Other 
Geology (%) 

The percentage of other 
geological bedrock in 
the surrounding sub-
catchment above a 
sampling point 

0–3, 3–10, 10–40, 40–70, 
70–100 

AUSRIVAS O/E — 
Riffle habitat 

Habscore  The sum of different 
habitat scores for 
stream habitat (see see 
Appendix L for details of 
habitat scores) 

0–84, 84–300 Thermophobic 
abundance  
— Edge habitat 

Shading of 
River (%) 

Estimation of the 
proportion of stream 
shaded when the sun is 
directly overhead. 

0–3, 3–25, 25–100 Macroinvertebrate 
community  
— Edge habitat 

% cover of 
reach by 
Riffle 
Periphyton 

The percentage of the 
stream reach in which 
sampling was taking 
place covered in 
periphyton (riffle only) 

0–35, 35–100 Macroinvertebrate 
community  
— Riffle habitat 

% Cover of 
riparian zone 
by shrubs 

The proportion of land 
covered by shrubs > 3m 
within the riparian zone 
of sampling site 

0–23, 23–60, 60–100 AUSRIVAS O/E — 
Edge habitat 
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Table 36. Child node descriptions, states and applicable models 

Child Node Description / definition States Model 
AUSRIVAS O/E 
score (Riffle) 

Observed taxa / expected taxa 
as predicted by the Upper 
Murrumbidgee catchment 
AUSRIVAS model (riffle) 

0–0.4, 
0.4–0.8, 
0.8–1.4 

AUSRIVAS O/E  
— Riffle habitat 

AUSRIVAS O/E 
score  (Edge) 

Observed taxa / expected taxa 
as predicted by the upper 
Murrumbidgee catchment 
AUSRIVAS model (edge) 

0–0.4, 
0.4–0.8, 
0.8–1.4 

AUSRIVAS O/E  
— Edge habitat  

Thermophobic 
taxa relative 
abundance 
(Riffle) 

The relative abundance of 
thermophobic species at the site 
in riffle habitat 

0–1, 1–5, 
5–20, 
20–100 

Thermophobic taxa relative 
abundance — Riffle habitat 

Thermophobic 
taxa relative 
abundance 
(Edge) 

The relative abundance of 
thermophobic species at the site 
in edge habitat 

0–1, 1–5, 
5–20, 
20–100 

Thermophobic taxa relative 
abundance — Edge habitat 

Leptophlebiidae 
(E) (%) 

The relative abundance of 
Leptophlebiidae at the sampling 
site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Riffle and Edge habitat models 

Gripopterygidae 
(P) (%) 

The relative abundance of 
Gripopterygidae at the sampling 
site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Riffle and Edge habitat models 

Leptoceridae (T) 
(%) 

The relative abundance of 
Leptoceridae at the sampling 
site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Edge habitat 

Conoesucidae 
(T) (%) 

The relative abundance of 
Conoesucidae at the sampling 
site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Riffle habitat 

Elmidae 
(Coleoptera) (%) 

The relative abundance of 
Elmidae at the sampling site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Edge habitat 

Scirtidae 
(Coleoptera) (%) 

The relative abundance of 
Scirtidae at the sampling site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Riffle habitat 

Oligochaeta 
(worms) (%) 

The relative abundance of 
Oligochaeta at the sampling site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Edge habitat 

Chironomidae 
(Diptera) (%) 

The relative abundance of 
Chironomidae at the sampling 
site 

0–2, 2–
10, 10–
100 

Macroinvertebrate community — 
Riffle habitat 

Macquarie 
Perch 

The presence or absence of 
Macquarie Perch at the 
sampling site 

Present / 
Absent 

Fish 

Trout Cod The presence or absence of 
Trout Cod  at the sampling site 

Present / 
Absent 

Fish 

Two-spined 
Blackfish 

The presence or absence of 
Two-spinned Blackfish at the 
sampling site 

Present / 
Absent 

Fish 

Australian Smelt The presence or absence of 
Australian Smelt at the sampling 
site 

Present / 
Absent 

Fish 

Mountain 
Galaxias 

The presence or absence of 
Mountain galaxias at the 
sampling site 

Present / 
Absent 

Fish 

Western Carp 
Gudgeon 

The presence or absence of 
Western carp gudgeon at the 
sampling site 

Present / 
Absent 

Fish 

Golden Perch The presence or absence of 
Golden perch at the sampling 
site 

Present / 
Absent 

Fish 

Fish species 
richness 

Number of native fish species at 
the sampling site 

1, 2, 3, 4, 
5 

Fish 
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6. SCENARIO ASSESSMENT 

This section describes the use of the Bayesian Networks (BNs) to inform adaptation 
initiatives. It describes a series of ‘story lines’ that demonstrate the use of the models to 
explore adaptation initiatives. The consequences of adaptation initiatives for future water 
security and waste water management for water quality and ecological response are also 
covered. Priorities for adaptation initiatives based on probabilities of adverse effects are 
also discussed. 

6.1 Scenario Assessment:  Story Line Results 

In the following sections we describe the consequences for the selected ecological end 
points, for the various management alternatives and/or climate change scenarios, in 
five regions within the Upper Murrumbidgee catchment. We selected these regions to 
illustrate the range of management adaptation alternatives: 

• Goodradigbee region — primarily conservation with little/no management; 

• Upper Cotter region — river regulation; 

• Upper Murrumbidgee region — river regulation; 

• Lower Molonglo region — salt discharge from water quality treatment centre;  

• Yass region — agriculture and salinity. 

We show the results for the climate scenarios associated with a 2oC increase in 
temperature (‘Minor change 2’, ‘Moderate change 2’ and ‘Major change 2’) only, 
because the results for the 1oC increase in temperature mirror the 2oC changes, but 
are less marked.  

In each region, with the exception of Lower Molonglo, the responses of the O/E score, 
the Thermophobic taxa relative abundance and the relative abundance of selected 
macroinvertebrates were investigated for both edge and riffle habitats. In the Molongolo 
region, we only investigated the response of the O/E score, which is a commonly used 
indicator of river condition in that region. In addition, we investigated Two-spined 
Blackfish in the Upper Cotter, because this species displayed a relatively significant 
response to climate change and is of management interest for fish conservation in the 
Upper Cotter region.   

6.1.1 Goodradigbee Region 

The Goodradigbee River catchment is located in the Brindabella mountain range on the 
eastern side of the Upper Murrumbidgee catchment (see Section 4, Figure 29). Most 
(95%) of the 1101 km2 catchment is forested, and the upper parts of the catchment 
located within Kosciuszko National Park. The remainder of the catchment is used for 
grazing purposes. The Goodradigbee River (105 km long) is considered to be 
unregulated, although there is a small diversion on the upper reaches of the river 
diverting water into Tantangara Dam (Lintermans 2002). In the Goodradigbee region, 
no management options were relevant, so all results from the BN are for the baseline 
management strategy — ‘no action taken’ (Figure 50). 
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Figure 50. Example BN for O/E score in edge sites under the management scenario of no action taken, and the Major change 2 Climate scenario in 
the Goodradigbee region 
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(i) O/E scores   
In the Goodradigbee region, the probability of O/E scores being in a particular state 
(i.e. condition) showed little change (only 5% for the 0.8–1.4 O/E score category) in 
edge habitats between different climate scenarios (Figure 51). In riffle habitats the 
models predicted an increasing likelihood of O/E scores being in the highest category 
(0.8–1.4) as climate change impacts increase (i.e. moving from historical to Minor, 
Moderate and Major climate change scenarios) (Figure 52). There was an almost 20% 
increase in the likelihood of O/E scores being in the highest state under the Major 
change 2 climate scenario compared to Historical conditions (Figure 52).  

(ii) Thermophobic taxa relative abundance 

As with O/E scores, there was little change in the relative abundance of Thermophobic 
taxa under different climate change scenarios in the edge habitats (Figure 53). In riffle 
habitats, the likelihood of the Thermophobic taxa relative abundance being high (in the 
20–100 state) was greatest under the Historical and Minor change 2 scenarios and 
least under the Major change 2 scenario (Figure 54). Relative to the Historical 
scenario, under the Major change 2 scenario Thermophobic taxa were 25% less likely 
to be highly abundant (Figure 54). 

 

Figures 51 & 52. Predicted probabilities of O/E scores in edge and riffle habitats in the 
Goodradigbee region, for four climate change scenarios (l–r): Historical climate 
conditions, Minor change 2, Moderate change 2, Major change 2. Edge = top graph; Riffle 
= lower graph. Probabilities (y axis): 0% to 100%. Categories: low scores: 0–0.4, red; 
moderate scores: 0.4–0.8, orange; high scores: 0.8–1.4, green. 
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Figures 53 & 54. Predicted probabilities of Thermophobic taxa relative abundance in 
edge and riffle habitats in the Goodradigbee region, for four climate change scenarios (l–
r): Historical climate conditions, Minor change 2, Moderate change 2, Major change 2. 
Edge = top graph; Riffle = lower graph. Probabilities (y axis): 0% to 100%. Categories: 0–
1, white; 1–5, pale grey; 5–20, dark grey; 20–100, black.  

 

(iii) Macroinvertebrate community indicators 

In edge habitats, the probability of representative macroinvertebrate community taxa 
being in a particular state changed minimally (<10%) under the different climate 
change scenarios (Figures 55–59). However, in riffle sites some taxa showed more 
pronounced changes (Figures 60–44). In riffle sites Leptophlebiidae and 
Gripopterygidae were 10% less likely to be highly abundant (present in numbers of 10–
100) under the Major change 2 climate change scenario than the Historical scenario 
(Figure 60 & Figure 64), while under Moderate change 2, Chironomidae was 20% less 
likely to be highly abundant (Figure 64). 

6.1.2 Goodradigbee region conclusions 

In the Goodradigbee region the results suggest that climate change may cause a slight 
decline in the Thermophobic taxa relative abundance and some taxa representative of 
the macroinvertebrate community (e.g. Leptophlebiidae) (as explained in Section 4). In 
contrast, predicted changes in the O/E scores suggest that the condition, as defined by 
the macroinvertebrate community, may improve slightly under climate change.  



 Predicting water quality and ecological responses 136 
 

 

 

 

 

 

Figures 55 (top)–59. Predicted probabilities of the relative abundance in edge habits in 
the Goodradigbee region, of Leptophlebiidae (top), Gripopterygidae, Leptoceridae, 
Elmidae, Oligochaeta (bottom), for four climate change scenarios (l–r): Historical climate 
conditions, Minor change 2, Moderate change 2, Major change 2. Probabilities (y axis): 
0% to 100%. States: 0–2, white; 2–10, grey; 10–100, black. 
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Figures 60 (top)–64. Predicted probabilities of the relative abundance in riffle habitats in 
the Goodradigbee region, of Leptophlebiidae (top), Gripopterygidae, Conoesucidae, 
Scirtidae, Chironomidae (bottom), for four climate change scenarios (l–r): Historical 
climate conditions, Minor change 2, Moderate change 2, Major change 2. Probabilities (y 
axis): 0% to 100%. States: 0–2, white; 2–10, grey; 10–100, black. 
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These results appear contradictory and may be an artefact of the model for this region.  
The Goodradigbee region has been minimally affected by human alterations and is 
generally considered to be in “reference” condition and the distribution of O/E scores 
are highly skewed. We have generally found weak relationships between O/E scores 
and the drivers of macroinvertebrate communities, particularly those that are climate 
related. These weak relationships may mean that our capacity to predict changes is 
limited with these models, and contradictory results are produced. 

Nonetheless, thermophobic and particular representative taxa did show a negative 
response to the declines in water availability predicted under the climate change 
scenarios tested. This suggests that even though Goodradigbee is a reference region 
minimally impacted by human activities some taxa may be vulnerable to climatic 
changes in the future.  

6.1.3 Upper Cotter Region 

The Cotter River is located on the western side of the Upper Murrumbidgee catchment 
and is regulated by three dams that supply water for Canberra. The Upper Cotter River 
comprises the area upstream of Cotter Dam (approximately 480 km2) and is covered 
with native forest (see Section 2 Figure 4 or Section 4 Figure 27). For the Upper Cotter 
region, management alternatives SM1 to SM4 (see Section 2) were relevant, so all 
results from the BN are given in terms of each management alternative (Figure 65). 

(i) O/E scores 

No large differences were predicted for O/E scores in any of the management 
alternatives or climate scenarios for the edge and riffle habitats (Figures 66, 67). Only a 
slight decrease (~5%) in the probability of high O/E scores (0.8–1.4) occurring was 
predicted for the edge habitat in all climate scenarios (Figure 66). 

(ii) Thermophobic taxa relative abundance 

No large differences were predicted for Thermophobic taxa relative abundance in any 
of the management alternatives or climate scenarios (Figures 68, 69). In edge habitat a 
slight decrease (~4%) in the probability of thermophobic taxa being in the highest 
abundance category was detected across climate scenarios (Figure 68), but for the 
riffle habitat the opposite trend was observed (Figure 69).  

(iii) Macroinvertebrate community indicators  
The models predict that climate change will decrease the probability that 
Leptophlebiidae are highly abundant in both edge and riffle habitats (Figures 70, 75). 
This response was more prominent under Major change 2 for the edge habitat (Figure 
70) and under Minor change 2 for the riffle habitat (Figure 75). In all cases, 
management alternative SM3 (increased water demand) reinforced this response 
(Figures 70, 75). Leptophlebiidae is a family which belongs to the Ephemeroptera order 
and together with the Plecoptera and Trichoptera order they make up the EPT metric. 
EPT is widely used as an indicator of river health; therefore it is expected that severe 
climate change will cause a decrease in the abundance of these orders. An increase in 
water demand (i.e. SM3) will amplify this response. 
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Figure 65. Example BN for macroinvertebrate representative taxa in Riffle sites under the Major change 2 Climate scenario in the Upper Cotter 
region

Elevation (m)
360 to 700
700 to 1360

16.9
83.1

945 ± 260

 Volcsed
0 to 0.03
0.03 to 1

 100
 0 +

0.015 ± 0.0087

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.21
1.89
70.3
22.1
5.49

61.8 ± 29

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

   0
   0
   0

 100
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

   0
   0
   0
   0

 100

Climate_Scenario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

   0
   0

 100
   0
   0
   0
   0

HF days per year
0 to 3
3 to 366

0.87
99.1

183 ± 110

Daily rainfall variability (1 year)
0 to 3
3 to 8

71.7
28.3

2.63 ± 2.1

Water temperature
0 to 12
12 to 30

26.2
73.8

17.1 ± 8.2

% cover of reach by Riffle Periphyton
Up to 35 percent
Above 35 percent

61.7
38.3

2.46 ± 1.4

Gripopterygidae (P)
0 to 2
2 to 10
10 to 100

45.2
25.2
29.6

18.2 ± 28

Conoesucidae (T)
0 to 2
2 to 10
10 to 100

46.9
36.6
16.6

11.8 ± 22

Leptophlebiidae (E)
0 to 2
2 to 10
10 to 100

27.2
21.7
51.1

29.7 ± 32

Scirtidae (Coleoptera)
0 to 2
2 to 10
10 to 100

90.5
8.84
0.70

1.82 ± 5.2

Chironomidae (Diperta)
0 to 2
2 to 10
10 to 100

0.27
27.4
72.3

41.4 ± 31
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Figures 66 & 67. Predicted probabilities of O/E scores in edge and riffle habitats in the 
Upper Cotter region, for 4 climate change scenarios and 4 management adaptation 
alternatives (l–r): Historical climate conditions + current management practices (no 
action); SM1–SM4 in each of Minor change 2, Moderate change 2 and Major change 2. Edge 
= top graph; Riffle = lower graph. Probability (y axis): 0–100%. Score categories: low: 0–
0.4, red; moderate: 0.4–0.8, orange; high: 0.8–1.4, green. 
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Figures 68 & 69. Predicted probabilities of Thermophobic taxa relative abundance in edge 
and riffle habitats in the Upper Cotter region, for 4 climate change scenarios and 4 
management adaptation alternatives (l–r): Historical climate conditions + current 
management practices (no action); SM1–SM4 in each of Minor change 2, Moderate change 
2 and Major change 2. Edge = top graph; Riffle = lower graph. Probability (y axis): 0% to 
100%. Categories: 0–1, white; 1–5, pale grey; 5–20, dark grey; 20–100, black.  
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Figures 70 (top)–74. Predicted probabilities of the relative abundance in edge habits in the 
Upper Cotter region, of Leptophlebiidae (top), Gripopterygidae, Leptoceridae, Elmidae, 
Oligochaeta (bottom), for 4 climate change scenarios and 4 management adaptation 
alternatives (l–r): Historical climate conditions + current management practices (no 
action); SM1–SM4 in each of Minor change 2, Moderate change 2 and Major change 2. 
Probability (y axis): 0% to 100%. States: 0–2, white; 2–10, grey; 10–100, black. 
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Figures 75 (top)–79. Predicted probabilities of the relative abundance in riffle habitats in 
the Upper Cotter region, of Leptophlebiidae (top), Gripopterygidae, Conoesucidae, 
Scirtidae, Chironomidae (bottom), for 4 climate change scenarios and 4 management 
adaptation alternatives (l–r): Historical climate conditions + current management practices 
(no action); SM1–SM4 in each of Minor change 2, Moderate change 2 and Major change 2. 
Probability (y axis): 0% to 100%. States: 0–2, white; 2–10, grey; 10–100, black. 
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A similar response to Leptophlebiidae was predicted for Leptoceridae (Trichoptera), 
Conoesucidae (Trichoptera) and Gripopterygidae (Plecoptera). A slight increase in the 
probability of Leptoceridae being present in low numbers (the lowest relative abundance 
category) was observed with climate change. This response was again more prominent 
under Major change 2 (~8%) and slightly reinforced by management alternative 3 (SM3, 
Figure 72). 

A similar response was observed for Conoesucidae (Figure 77). Climate change 
produced an increase in the probability of Conoesucidae being present in low numbers 
(Figure 77). This response was more prominent under Major change 2 (~16 %) 
(Figure 77). In all cases, management alternative SM3 slightly reinforced this response 
(Figure 77).  

Finally, Gripopterygidae (Plecoptera) showed the same response as other EPT families, 
but only for riffle sites. In the riffle, the probability of Gripopterygidae being highly 
abundant decreased ~10% under the Major change 2 (Figure 76). However, in edge 
sites the probability of Gripopterygidae being highly abundant increased with climate 
change (Figure 71). 

Decreases in the abundances of the families Elmidae and Scirtidae (Coleoptera) were 
also observed. This response was strongest in the case of Elmidae with the probability of 
being highly abundant decreasing under Major change 2 by ~10% (Figure 73). 
Meanwhile for Scirtidae the decrease was very small (~3%) (Figure 78). This response 
was slightly reinforced by an increase in the water demand (management alternative 
SM3) in the case of the family Scirtidae. Although Coleoptera is not part of the EPT 
metric, some families of the order Coleoptera such as Elmidae and Scirtidae are also 
identified as sensitive. Therefore, a decrease in their abundances, as predicted by our 
models, might also be expected as a result climate change.  

By contrast, taxa traditionally identified as tolerant are expected to either increase with 
climate change, or at least be minimally impacted. Our predictions are consistent with 
this expectation, with tolerant families Chironomidae and Oligochaeta predicted to 
change little between climate or management scenarios (Figures 74, 79).  

(iv) Two-spined blackfish 

A decrease in the probability of Two-spined Blackfish being present across climate 
scenarios was predicted (Figure 80). This decrease was most prominent for the severest 
climate scenario (Major change 2) and slightly exacerbated by an increase in water 
demand under the SM3 management scenario. Two-spined Blackfish is a flow sensitive 
species and particularly sensitive to changes in flow variability. The scenarios tested are 
likely to change flow variability, which may explain, in part, the predicted negative impact 
of climate change on the species. However, future research is needed to further 
investigate this issue.  

6.1.4 Upper Cotter region conclusions 

In the Upper Cotter region the results suggested that climate change may cause a slight 
decrease in the probability of achieving the highest categories of O/E scores (i.e. 
worsening river condition). In addition, most of the sensitive macroinvertebrate taxa (EPT 
and coleopterans) may be negatively impacted (except for Gripopterygidae in riffle 
sites).On the other hand, tolerant taxa (Chironomidae and Oligochaeta) are unlikely to be 
affected. Thermophobic taxa relative abundance appeared to be unaffected by climate 
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change. The presence of the vulnerable native fish species, the Two-spined Blackfish, is 
expected to decrease.  

  

Figure 80. Predicted probability of Two-spined Blackfish presence/absence in the Upper 
Cotter region, for 4 climate change scenarios and 4 management adaptation alternatives 
(l–r): Historical climate conditions + current management practices (no action); SM1–SM4 
in each of Minor change 2, Moderate change 2 and Major change 2. Probability (y axis): 0% 
to 100%. Present, black; absent, white. 

Key macroinvertebrate taxa are predicted to be adversely affected by climate change, 
and in some cases this is reinforced by an increase in the demand for water. 
Disappearance of these key taxa could have important implications for the way in which 
the aquatic ecosystems function. Macroinvertebrates are commonly used as measures 
of river health because of their important role in food webs and their sensitivity to 
disturbances. Consequently, a loss of macroinvertebrate diversity can seriously affect 
river ecosystem functioning. Generally, in this study, the effect of climate change on 
individual taxa was more evident than the effect of climate change on aggregate 
community indicators (O/E scores or Thermophobic taxa relative abundance). This 
suggests that studying individual taxa that are key elements in the ecosystem may be 
more useful than studying aggregate metrics for detecting climate change impacts on 
aquatic ecosystems.  

Within the Upper Cotter there also appeared to be little or no effect of the management 
alternatives on the ecological responses tested. Only an increase in water demand under 
management alternative SM3 resulted in an amplification of the negative effect of climate 
change. These results are not a surprise, because the Upper Cotter has been subject to 
environmental flows for many years and in the applied management alternatives we 
tested here there was little change to these conditions. 
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6.1.5 Upper Murrumbidgee Region 

The Upper Murrumbidgee region forms the headwaters of the broader study area (the 
Upper Murrumbidgee River catchment as a whole) and encompasses the area upstream 
of Tantangara Dam through to the confluence with the Numeralla River (see maps at 
Figures 4 in Sections 2). The area upstream of Tantangara Dam is forested, and most of 
it is within Kosciuszko National Park. Downstream of Tantangara, the land use is a mix of 
forest (including national park and nature reserves), cropping and grazing. Tantangara 
Dam is a major regulating structure on the Murrumbidgee River, diverting in excess of 
99% of the flows from the Murrumbidgee River into the Snowy Hydro scheme. For the 
Upper Murrumbidgee region, management alternatives SM1 – SM4 were relevant, so 
here we give the results from the BN for each option (Figure 81). 
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Figure 81. Example BN for O/E score in edge habitat under Management scenario SM1 and the Major change 2 Climate scenario in the Upper 
Murrumbidgee region.
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(i) O/E scores 

Regardless of the climate change severity, the probability of O/E scores being high was 
much lower for the edge habitat under management alternative SM1 (no water being 
released from Tantangara Dam), and when only purchased ACT water was released 
from Tantangara Dam (management alternative SM3, Figure 82). For the riffle habitat 
when no water was being released from Tantangara Dam (management alternative 
SM1) there was a slight decrease (1–2%) in the probability of getting a high O/E score 
across the three climate scenarios (management alternative SM1, Figure 83). 

(ii) Thermophobic taxa relative abundance 

High Thermophobic taxa relative abundance (20–100%) for the edge habitat decreased 
under each climate scenario compared to historical conditions (Figure 84). However, 
regardless of climate scenario under management alternatives SM1 (no water released) 
and SM3 (minimal water released), there was an increased likelihood of thermophobic 
taxa being absent (0–1% relative abundance category, Figure 84).  

Similarly for the riffle habitat, regardless of climate change and when no water was being 
released from Tantangara Dam (management alternative SM1), high Thermophobic taxa 
relative abundance (20–100%) was less likely, compared to the probability under other 
management alternatives (Figure 85). There was also an increased absence of 
thermophobic taxa (0–1% relative abundance category) compared to other scenarios 
(Figure 85). 

(iii) Macroinvertebrate community indicators 

For the edge habitat the relative abundances of Leptophlebiidae, Gripopterygidae, and 
Leptoceridae were dependent upon water being released from Tantangara Dam (Figures 
86–88). Regardless of the climate scenario, when no water was being released from 
Tantangara Dam (management alternative SM1), absences (0–1% category) of 
Leptophlebiidae, Gripopterygidae and Leptoceridae increased (Figures 86–88). 
Conversely, the relative abundance of tolerant Oligochaeta increased regardless of 
climate scenario when no water was being released from Tantangara Dam under 
scenario SM1 (Figure 90). 

Elmidae was the only taxon in the edge habitat model not to show a response to 
management; it possibly showed a small response to climate change (Figure 89). Across 
each climate change scenario there was a small increase in absences of Elmidae (0–1% 
category) (Figure 89). However, it should be noted that this relationship may have been 
limited by low Elmidae abundance in the historical data set (Figure 89). 

Macroinvertebrate community results for the riffle habitat also showed a minimal 
response to climate change (Figures 91–95). Across all climate change scenarios, the 
relative abundance of Scirtidae increased regardless of the management alternatives 
applied (Figure 94). 

Conoesucidae was the only taxon to show a negative response to no water being 
released from Tantangara Dam under management alternative SM1 (Figure 93). The 
relative abundances of Leptophlebiidae, Gripopterygidae and Chironomidae 
unexpectedly all increased under management alternative SM1 (Figures 91, 92, 95).  
Further investigation is needed, to determine the influencing factors behind the 
relationship for the relative abundance of each taxon with management alternative SM1.  
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Figures 82 & 83. Predicted probabilities of O/E scores in edge and riffle habitats in the 
Upper Murrumbidgee region, for 4 climate change scenarios and 4 management adaptation 
alternatives (l–r): Historical climate conditions + current management practices (no 
action); SM1–SM4 in each of Minor change 2, Moderate change 2 and Major change 2. Edge 
= top graph; Riffle = lower graph. Probability (y axis): 0–100%. Score categories: low: 0–
0.4, red; moderate: 0.4–0.8, orange; high: 0.8–1.4, green. 
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Figures 84 & 85. Predicted probabilities of Thermophobic taxa relative abundance in edge 
and riffle habitats in the Upper Murrumbidgee region, for 4 climate change scenarios and 4 
management adaptation alternatives (l–r): Historical climate conditions + current 
management practices (no action); SM1–SM4 in each of Minor change 2, Moderate change 
2 and Major change 2. Edge = top graph; Riffle = lower graph. Probability (y axis): 0% to 
100%. Categories: 0–1, white; 1–5, pale grey; 5–20, dark grey; 20–100, black.  
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Figures 91 (top)–95. Predicted probabilities of the relative abundance in riffle habitats in 
the Upper Murrumbidgee region, of Leptophlebiidae (top), Gripopterygidae, Conoesucidae, 
Scirtidae, Chironomidae (bottom), for 4 climate change scenarios and 4 management 
adaptation alternatives (l–r): Historical climate conditions + current management practices 
(no action); SM1–SM4 in each of Minor change 2, Moderate change 2 and Major change 2. 
Probability (y axis): 0% to 100%. States: 0–2, white; 2–10, grey; 10–100, darker grey. 
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6.1.6 Upper Murrumbidgee region conclusions 

The influence of climate change on macroinvertebrate communities is relatively small 
compared to that of flow management in the Upper Murrumbidgee Region. Changes in 
macroinvertebrates communities are largely driven by the release of flows from 
Tantangara Dam and an absence of flow from the dam results in large negative changes 
to macroinvertebrate communities, especially in the edge habitat. Differences in 
responses between edge and riffle habitats in the region require further investigation to 
determine the factors influencing the responses of macroinvertebrates in each habitat in 
response to flow management and further modifications of the riffle models may be 
required.   

6.1.7 Lower Molonglo Region 

The Lower Molonglo River is located to the north-east of Canberra and encompasses the 
area downstream of Canberra’s major constructed waterbody, Lake Burley Griffin.  The 
river receives runoff from urban streams, and the land use is a mixture of urban and peri-
urban development combined with grazing operations. The river receives discharge from 
the Lower Molonglo Water Quality Control Centre (LMWQCC, the main sewage 
treatment plant for Canberra); hence all effluent management options were relevant. 
Results from the BN for this region are given in terms of each effluent management 
scenario (Figure 96). 

(i) O/E scores 

The four effluent management scenarios resulted in almost identical predictions of O/E 
score distributions for both edge and riffle habitats, and they all differed from the 
Historical, ‘no action’, scenario. Relative to historical conditions, in riffle habitat it is 
predicted that the probability of O/E scores being high will increase, while in edge sites a 
decrease is predicted (Figures 97, 98).  

(ii) Lower Molonglo conclusions 

A slight improvement in the O/E scores in riffle may be associated with the positive effect 
of salt reduction in the water because of the effluent management options being 
implemented. However, more data is required for the region to test the potential effects 
of the different effluent management scenarios here, because conditions predicted for 
climate change and effluent management scenarios are outside the range of the limited 
amount of data used to construct the models.   
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Figure 96. Example BN for OE taxa score in edge site under the TDS reduction scenario and the Major change 2 Climate scenario in the Lower 
Molonglo region. 

 

Elevation (m)
300 to 600
600 to 1400

 100
 0 +

450 ± 87

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

   0
   0
   0
   0

 100

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

   0
   0
   0
   0
   0
   0
   0

 100
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

Climate Scernario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

   0
   0

 100
   0
   0
   0
   0

OE response (Edge)
0 to 0.4
0.4 to 0.8
0.8 to 1.4

13.7
25.2
61.1

0.851 ± 0.37

Cover of riparian zone by shrubs
0 to 23
23 to 60
60 to 100

33.3
50.0
16.7

37.9 ± 25

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

0.35
3.08
75.6
18.0
3.00

58.1 ± 29

EC (uS/cm)
0 to 30
30 to 118
118 to 350
350 to 390
390 to 420
420 to 800
800 to 1650

13.9
53.8
23.2
1.41
7.69
   0
   0

133 ± 120

Effluent Controls
Baseline scenario
TDS reduction
Upgrade LMWQCC
Membrane filtration
Salt and Sewerage

   0
 100
   0
   0
   0

DO (mg/L)
0 to 6
6 to 7.44
7.44 to 9
9 to 15

3.55
5.16
18.0
73.3

10.7 ± 2.8

CTF days per year
0 to 20
20 to 43
43 to 80
80 to 366

99.1
0.87
 0 +
 0 +

10.2 ± 6.1

Mean daily flow (1year)
0 to 100
100 to 300
300 to 500
500 to 3200

74.8
20.0
4.35
0.87

111 ± 200

Mean max daily temp (1 year)
0 to 19
19 to 21
21 to 27

28.6
14.3
57.1

19.3 ± 7.1

Intensive land use
0 to 0.02
0.02 to 0.1
0.1 to 0.5
0.5 to 1

 100
 0 +
 0 +
 0 +

0.01 ± 0.0059
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Figures 97 & 98. Predicted probabilities of O/E scores in edge and riffle habitats in the Lower Molonglo region, for 4 climate change scenarios and 
4 effluent management scenarios. (L–r): Historical climate conditions + current management practices (no action); Minor change 2, Moderate 
change 2 and Major change 2, each including TDS reduction, Upgrade LMWQCC, Membrane filtration, Salt and sewage.  
Edge = top graph; Riffle = lower graph. Probability (y axis): 0–100%.  
Score categories: low: 0–0.4, red; moderate: 0.4–0.8, orange; high: 0.8–1.4, green. 



 Predicting water quality and ecological responses 155 
 

 

Figure 99. Example BN for the macroinvertebrate community (Riffle) showing the results for Yass region, no management action taken and 
historical climate scenario.  

Region
Ginninderra
Cooma
Paddys
Upper Cotter
Lower Cotter
Upper Molonglo
Mid Molonglo
Lower Molonglo
Queanbeyan
Bredbo
Burrinjuck
Gudgenby
Yass
Numeralla
Mid Murrumbidgee
Upper Murrumbidgee
Goodradigbee
Tuggeranong

   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

 100
   0
   0
   0
   0
   0

Management Scenarios
SM 1
SM 2
SM 3
SM 4
No action taken

   0
   0
   0
   0

 100

Climate_Scenario
Historical
Major change 1
Major change 2
Moderate change 1
Moderate change 2
Minor change 1
Minor change 2

 100
   0
   0
   0
   0
   0
   0

Gripopterygidae (P)
0 to 2
2 to 10
10 to 100

39.8
26.5
33.7

20.5 ± 29

Conoesucidae (T)
0 to 2
2 to 10
10 to 100

64.1
29.0
6.93

6.19 ± 15

 Volcsed
0 to 0.03
0.03 to 1

83.0
17.0

0.1 ± 0.22

Leptophlebiidae (E)
0 to 2
2 to 10
10 to 100

32.6
21.1
46.3

27.1 ± 31

Scirtidae (Coleoptera)
0 to 2
2 to 10
10 to 100

95.5
3.49
1.05

1.74 ± 6.2

Chironomidae (Diperta)
0 to 2
2 to 10
10 to 100

1.07
27.3
71.7

41.1 ± 31

Flow Distribution
Very High flow
High Flow
Intermediate Flow
Low Flow
Very Low Flow

 1.0
9.00
80.0
9.00
 1.0

50.1 ± 29

Daily rainfall variability (1 year)
0 to 3
3 to 8

69.1
30.9

2.73 ± 2.1

HF days per year
0 to 3
3 to 366

   0
 100

185 ± 100

Elevation (m)
360 to 700
700 to 1360

95.7
4.26

551 ± 140

Water temperature
0 to 12
12 to 30

43.6
56.4

14.5 ± 8.7

% cover of reach by Riffle Periphyton
Up to 35 percent
Above 35 percent

84.5
15.5

1.89 ± 1.2
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Figures 100 & 101. Predicted probabilities of O/E scores in edge and riffle habitats in the 
Yass region, for four climate change scenarios (l–r): Historical climate conditions, Minor 
change 2, Moderate change 2, Major change 2. Edge = top graph; Riffle = lower graph. 
Probabilities (y axis): 0% to 100%. Categories: low scores: 0–0.4, red; moderate scores: 
0.4–0.8, orange; high scores: 0.8–1.4, green. 
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Figures 102 & 103. Predicted probabilities of Thermophobic taxa relative abundance in 
edge and riffle habitats in the Yass region, for four climate change scenarios (l–r): 
Historical climate conditions, Minor change 2, Moderate change 2, Major change 2. Edge 
= top graph; Riffle = lower graph. Probability (y axis): 0% to 100%. Categories: 0–1, white; 
1–5, pale grey; 5–20, dark grey; 20–100, black.  
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Figures 104 (top)–108. Predicted probabilities of the relative abundance in edge habits in 
the Yass region, of Leptophlebiidae (top), Gripopterygidae, Leptoceridae, Elmidae, 
Oligochaeta (bottom), for four climate change scenarios (l–r): Historical climate 
conditions, Minor change 2, Moderate change 2, Major change 2. Probability (y axis): 0% 
to 100%. States: 0–2, white; 2–10, grey; 10–100, black. 
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Figures 109 (top)–113. Predicted probabilities of the relative abundance in riffle habitats 
in the Yass region, of Leptophlebiidae (top), Gripopterygidae, Conoesucidae, Scirtidae, 
Chironomidae (bottom), for four climate change scenarios (l–r): Historical climate 
conditions, Minor change 2, Moderate change 2, Major change 2. Probability (y axis): 0% 
to 100%. States: 0–2, white; 2–10, grey; 10–100, black. 
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6.1.8 Yass Region 

The Yass region is located in the north of the Upper Murrumbidgee catchment. Most of 
the 1600 km2 catchment is used for agricultural purposes: the dominant land uses are 
peri-urban development and grazing. Some intensive land uses (viticulture and 
horticultural activities) also exist within the catchment. The Yass River is unregulated; 
extractions for Yass town water supplies occur at Yass weir. For the Yass region, no 
management alternatives were relevant, so all results from the BN are given for the 
baseline management strategy “no action taken” (Figure 99). 

(i)  O/E scores 

For the edge habitat, the probability of O/E scores being low (0–0.4) increased under 
the climate change scenarios (Figure 100). For the riffle habitat, a very minor but 
positive response to climate change occurred in O/E scores (Figure 101).  

(ii) Thermophobic taxa relative abundance 

Thermophobic taxa relative abundance in the edge and riffle habitats showed slight 
negative responses to increasing climate change severity (Figures 102, 103). As 
climate change severity increased there were slight increases the probability of 
absence of thermophobic taxa (0–1% relative abundance category) (Figures 102, 103).  

(iii) Macroinvertebrate community indicators 

For both the macroinvertebrate community indicator models (where select taxa were 
used to represent the macroinvertebrate community in both edge and riffle habitats), 
sensitive taxa (EPT) were predicted to show a negative response to climate change, 
while more tolerant common taxa were predicted to show a positive response to 
climate change.  

In the edge model for community response, the sensitive species Leptophlebiidae, 
Gripopterygidae, Leptoceridae and Elmidae were predicted to show an overall negative 
response to climate change; however, for Gripopterygidae, no clear response was 
predicted (Figures 104–107). Meanwhile, there was a predicted  increase in the more 
common tolerant Oligochaeta (worms) with changing climate scenarios (Figure 108). 

In the whole community riffle model, Leptophlebiidae (Figure 109), Gripopterygidae 
(Figure 110), Conoesucidae (Figure 111) and Scirtidae (Figure 112) showed a 
predicted decrease in the probability of occurrence in the highest relative abundance 
category (20–100%) and a predicted increase in the probability of absences (0–1% 
category), with increases in air temperatures associated with changing climate 
scenarios. Conversely, tolerant Chironomidae showed a predicted  increase in the 
probability of occurrence in the highest relative abundance category (20–100%) and a 
predicted  increase in the probability of absences (0–1% category) with increasing 
severity of climate change (Figure 113).  

(iv) Yass region conclusions  

Increasing severity in climate change was predicted to have a negative effect on 
macroinvertebrate communities in the Yass Region. BN models still showed, for the 
most part, a negative response of sensitive taxa to increasing climate impacts, and a 
positive association by more common, tolerant macroinvertebrates (Oligochaeta and 
Chironomidae) to increasing temperatures (air and water), thus indicating a possible 
decline in river health in the Yass region with climate change. Flow variability may play 
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a role in the decline in river health, as as a result of changes in rainfall total or 
variability and increases in water temperature. 

6.2 Storyline synthesis 

The predicted responses of macroinvertebrate communities to theoretical scenarios of 
climate change and/or alternative management adaptations varied across the five 
regions examined. The strongest predicted effects of management occurred in the 
Upper Murrumbidgee region where there was the greatest direct impact of 
management alternatives on flows downstream of Tantangara Dam. In this region, the 
impacts of the theoretical adaptation alternatives appeared to outweigh the effects of 
climate change. In the Lower Molonglo region there was a potential effect from 
management alternatives relative to baseline conditions, illustrating the direct effects of 
effluent control options for this region.  

Responses to climate change were predicted to occur in the Upper Cotter, 
Goodradigbee and Yass regions, with the latter two regions not subject to management 
adaptation alternatives.  

Future investigation of macroinvertebrate community responses will need to consider 
regional differences. In some cases different responses between the edge and riffle 
habitat will also need to be taken into account. The most appropriate macroinvertebrate 
community condition indicator will also need to be considered, given the differing 
responses that were found across the five regions examined. In general, the 
predictions showed there was a consistent decrease in EPT taxa with climate change, 
except for Gripopterygidae in some regions (Yass and Upper Cotter regions).  

The outputs provided by the BN assisted in addressing the three components proposed 
in Objective 3 (see section 1, Table 1), which are discussed below. 

6.2.1 Evaluation of the consequences of alternative management  
  adaptations in future water security and waste water 
management   for water quality and ecological responses 
We can make two key observations as a result of running the scenario models for the 
alternative management adaptations. 

(i) There are different predicted responses to climate change and management 
between regions; and  

(ii) ecological responses are predicted to vary within and between regions.  

The differing responses between regions suggest that within the Upper Murrumbidgee 
River catchment as a whole, alternative management adaptations should not be 
uniformly applied in response to climate change. We observed that in the Upper Cotter 
region the alternative management adaptations appeared to have minimal, if any, 
influence. However, in other regions, alternative management adaptations could be 
highly beneficial.  

For example, this project predicts that alternative management adaptations to secure 
water for Canberra from Tantangara Dam would have positive effects on the ecological 
condition of the Upper Murrumbidgee region. Similarly, if alternative management 
adaptations involving effluent management were to be applied in the Lower Molonglo 
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region, these should be beneficial for river health. This is an example where multiple 
benefits can be achieved from alternative management adaptations.  

Our results suggest that it would be wise to consider the feasibility of alternative 
management adaptations, and adjust them to the local and spatial conditions within the 
catchment.  

Secondly, the predicted differential ecological responses also suggest that 
management will need to consider their objectives in applying alternative management 
adaptations. It may not be possible to make general management adaptations, aiming 
simply to ‘improve or maintain’ ecological condition under climate change, because 
only some taxa may show positive responses.  

This situation will be an issue both within and between regions in this overall Upper 
Murrumbidgee catchment, and possibly even at local scale (e.g. between edge and 
riffle habitats). Varying ecological responses are likely to play an important role in how 
alternative management adaptations are prioritised.   

6.2.2 Prioritising for alternative management adaptations, based on  
  probabilities of adverse effects  
The predicted variations in regional and ecological responses have significant 
consequences for the prioritisation of alternative management adaptations. At the 
regional level, priorities for adaptation should take into account both the predicted 
impact of climate change and the consequences of different management actions. 

In regulated rivers, where future climate and management scenarios are predicted to 
involve high water demand and declines in macroinvertebrate indicators (e.g. in the 
Upper Murrumbidgee region), then a focus on alternative management adaptations 
should be prioritised.  

In contrast, in the unregulated, but stressed rivers of the region (e.g. Yass River), this 
project predicts that climate change will worsen the ecological health of the river, and 
would be likely to amplify current negative effects of catchment management practices. 
There are currently no alternative management adaptations for the Yass River, but its 
vulnerability to climate change suggests that some should be developed. Natural 
Resource Management activities (such as restoring the riparian zone) to help mitigate 
the effects of climate change are one option.  

Finally in the rivers that are in ‘reference condition’, where there may be some slight 
negative climate change impacts for selected taxa (e.g. thermophobic taxa in the 
Goodradigbee River), and no management options, then it may be sufficient to 
continue assessment of effects of future climate change by using new climate 
scenarios. Continued protection of ‘reference condition’ areas also means that we have 
valuable places within the landscape where biota can adapt to climate change without 
the additional stressors of land use change. 

In addition to considering the interplay between climate and management impacts at 
the regional level, ecological responses should also be considered when prioritising 
alternative management adaptations. Two possible approaches are  

(i) prioritising action towards those ecological responses that show the highest 
vulnerability to climate change (e.g. thermophobic taxa), or  
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(ii) prioritising action towards taxa which are of the highest social ‘value’ (e.g. fish 
species). In practice, a combination of these approaches, among others, will likely 
be used to prioritise alternative management adaptations.  

Regardless, prioritisation will need to take into account that ecological responses to 
initiatives may vary significantly, depending both on the species or community focused 
on in the study, and the region of interest.  
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7. TRANSFERABILITY AND REFLECTIONS 

In this section we assess the transferability of the model framework to other regions, and 
we identify revisions the model requires for it to be broadly applicable. The section 
presents a framework for a linked modelling approach, and concludes with key learnings 
from the project, which will inform future use of the framework. 

Managing freshwater resources for people and the environment requires an 
understanding of the relationship between climate change, water quality and ecological 
responses. Most research into the potential impacts of climate change on water 
resources has focused on the volumes of water available. In contrast, little attention 
has been directed at potential water quality changes, and consequent impacts on 
aquatic ecosystems.  

This research project developed a modelling framework to link ecological and water 
quality responses to stream flow patterns and management activities (Figure 64). The 
framework will improve understanding about the consequences of climate change, 
including interactions between water management and freshwater ecosystem 
responses. The study has used the Upper Murrumbidgee River catchment as its 
context and source of data and models. Therefore, the modelling framework created for 
the Upper Murrumbidgee catchment will be of immediate use to the ACT Government 
and ACTEW Water, and regional local government. It should help them understand the 
effects of climate change on salinity and ecological response in streams.  

Water resource managers from other regions of Australia have shown interest in this 
project, and we have therefore partnered with the Goulburn Broken Catchment 
Management Authority (CMA) to test the transferability of our approach within the 
Goulburn Broken (GB) Catchment (Figure 114). Results of the testing will help us refine 
the models and ensure that the approach is applied more broadly. The transparency of 
Bayesian Networks and the ease of updating models as new knowledge becomes 
available together make this project’s approach easily accessible to stakeholders and 
other end users. 

In this section we give an overview of the Goulburn Broken catchment as context for 
the transferability testing. The discussion is structured around the same aspects we 
covered for the Upper Murrumbidgee catchment, including the hydrological profile of 
the catchment, present and future adaptation options, water quality and ecological 
conditions. Then, we present the concepts of transferability, including cognitive and 
technical transferability, and use this to discuss how our modelling framework can be 
directly or indirectly transferred. 

7.1 Goulburn Broken catchment 
The Goulburn Broken (GB) catchment is located in northern central Victoria and covers 
area of 24,000 km2 (Figure 115). The catchment extends from the Great Dividing 
Range (near the outskirts of Melbourne) up to the River Murray on the New South 
Wales border, and covers around 10.5% of the total area of Victoria. The area supports 
a population of around 215,000 people. Over 90% of the population reside in the major 
centres including Shepparton, Nagambie, Benalla, Kyabram and Tatura (CSIRO 
2008a).  
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Figure 114. Project framework for model construction for the Upper 
Murrumbidgee catchment and transferability testing in the Goulburn-Broken 
Catchment 
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Figure 115. A map of the Goulburn Broken Catchment (GBCMA 2012) 

 

The catchment itself sits within the wider Murray Darling Basin (MDB) and makes up 
around 2.1% of the total area of the MDB, but produces about 11% of the MDB’s total 
water resources (GBCMA 2005). Average annual rainfall in the GB region is 764 mm, 
varying between 1600 mm per year in the southern high country of the Great Dividing 
Range, to only 450 mm per year in the north-western plains (Miles et al. 2010).   

The dominant land-use across the region is dryland agriculture, which covers 1.4 Mha 
(approximately 62% of the catchment) (GBCMA 2005), and irrigated agricultural 
production of, for example, perennial pasture, cereal, orchards and vine fruits, covers a 
further 9% of the region. The dryland area of the Goulburn-Broken Catchment 
generates around $1.9 billion in economic activity each year, and irrigated food 
production contributes to 25% of Victoria’s export earnings (GBCMA 2005). Most of the 
low lying regions have been cleared of native vegetation for agricultural production; yet 
native vegetation still remains in the mountains and covers just over 30% of the total 
area of the Goulburn Broken catchment (CSIRO 2008a). Further land uses include 
tourism, recreational services, urban centres, as well as approximately 800,000 ha of 
public land. Based on 2009 figures, the gross regional output was $15.9 billion, with the 
gross value of agricultural production contributing $1.16 billion in 2009–10 and the 
value of tourism and other services reaching $2.29 billion, 30% of the gross regional 
output (increasing from only 3.9% in 2001) (Monticello 2012). Rivers and streams in the 
upper Goulburn catchment are highly valued for tourism and recreation, with many 
visitors from outside the catchment taking advantage of the high quality rivers and 
wetlands. 

The Goulburn Broken catchment includes the two major basins of the Goulburn River 
and the Broken River. The Goulburn River basin is the largest in Victoria, occuping 
over 1.6 million hectares (7.1% of the state’s total area) (GBCMA 2005). The river 
originates on the northern slopes of the Great Dividing Range near Woods Point, and 
flows in a north and westerly direction before joining the River Murray just upstream of 
Echuca on the NSW border. The river is approximately 570 km long, with an annual 
discharge of 3040 GL (1.8 ML/ha), representing 13.7% of the state’s total discharge. 
The river is heavily regulated, and supports extensive irrigation regions. Lake Eildon, 
the largest of the regulatory features on the river, has a capacity of 3390 GL and 
supplies more than half of the water used in the Shepparton Irrigation Region.  

The Eildon reservoir has altered the flow regime of the river so the winter/spring flows 
are reduced and summer/autumn flows are increased, essentially reversing the natural 
flow patterns. The Goulburn Weir also regulates the river and, along with its associated 
diversion channels, has reduced the average annual downstream flow to only 1340 GL, 
less than half the pre-regulated flow (GBCMA 2005). Water is diverted into the 
Cattanach and Stuart Murray canals and delivered to the Waranga Basin which is also 
connected to the Loddon and Campapse rivers by the Waranga Western Channel 
(CSIRO 2008a).  

The Broken River basin occupies an area of around 772,000 ha, and is the major 
tributary of the Goulburn River, which it joins at Shepparton. Most of this basin has 
been cleared of native vegetation for agricultural purposes and a large part of the basin 
lies within the Murray Valley irrigation district which supports intensive horticulture, 
dairy and livestock production (GBCMA 2005). The mean annual flow within the Broken 
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River itself is 325,000 ML (0.42 ML/ha), although over half of this is recorded between 
the months of July and September. Annual flow has varied greatly over the years, from 
only 5000 ML in 1943, under drought conditions, to 1,000,000 ML in 1917 and 1956, 
under flood conditions. The major water storage on the Broken River is Lake 
Nillahcootie, with a capacity of 40,000 ML which supplies water for stock, domestic and 
irrigation (GBCMA 2005). Lake Mokoan, now called the Winton Wetlands, was 
decommissioned as an active reservoir in 2010 and its natural wetland habitat is now 
being restored (GBCMA 2005).  

The Broken-Boosey National Park, a unique linear corridor in the north of the basin 
covering 1030 ha, was declared a National Park after the passing of the Box-Ironbark 
Bill on 30 October 2002. This unique area stretches from the Barmah Forest (a 
Ramsar-listed wetland) to nearly the Broken River in the south. 

(i)  Water quality 

The Goulburn Broken Catchment Management Authority (CMA) last prepared a Water 
Quality Strategy in June 1996, which outlined the priorities for water quality in the 
catchment over the following 20 years. The document was reviewed in 2002 (GBCMA 
2002) and 2007 (GBCMA 2008). The strategy focuses on reducing the supply of 
excess nutrients to waterways, to minimise the impacts of blue-green algal blooms.  

In 2010 the Regional River Health Strategy was reviewed (GBCMA 2010). The 
Progress report stated that water quality in 1990 had been poor, and it had since 
improved to a satisfactory level in 2009, with an improving trend. In particular, however, 
the 5-year rolling average for phosphorus load remained below its target. The 
decreased loads resulted from substantially decreased discharges from the region’s 
waste water treatment plants and irrigation drains. At the time of the Regional River 
Health Strategy review (GBCMA 2010), the Goulburn Broken catchment was still in the 
early stages of recovery from the 2006 and 2009 bushfires which had burnt substantial 
areas within the catchment. Short-term impacts on water quality were evident post-fire, 
with large increases in stream turbidity (Feehan 2012b). However, the effects of the 
fires on stream turbidity now seem to dissipating and there is no indication of a long-
term effect on water quality (Feehan 2012b).  

More recently, Newall et al. (2008) assessed the ecological risks to native fish 
communities in the Broken Creek and River. The assessment was called for in these 
parts of the catchment because of consistent failure to meet the State Environment 
Protection Policy (WoV; Government of Victoria 2003) guidelines on water quality, in 
particular the levels of turbidity, phosphorus and dissolved oxygen. Newall et al. (2008) 
present the status of these three parameters, as well as the targets and timeframe that 
was set to improve the conditions (Table 37).  

Goulburn-Murray Water (G-MW) is the main regulator of the waterways in the Goulburn 
Broken catchment, and is responsible for the water quality within its storage facilities at 
Lake Eildon, Goulburn Waranga Basin and Lake Nillahcootie. Some of the major 
sources of risks to water quality in these areas are sedimentation, erosion, waste water 
management, stock access, and extreme weather events. These can lead to high 
turbidity, decreased dissolved oxygen, increased nutrient load (especially nitrogen and 
phosphorus) in water ways, and blue-green algae blooms (G-MW 2011).  G-MW has 
developed BGA Response Plans to deal with algae blooms.  
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Table 37. Current status and condition targets for turbidity, phosphorus and dissolved 
oxygen in Broken Creek and Broken River (adapted from Newall et al. 2008) 

Parameter Site WoV 
objective 

Curre
nt 
status 

Resource 
Condition 
Target 
(75th 
percentile) 

Time 
frame 

Uncertainty 
(confidence level 
to achieve target 
in timeframe) 

Turbidity 
(NTU) 

Broken 
Creek 

<30 >100 <100 
WoV (<30) 

5 yrs  
(15 
yrs) 

Low to moderate 

Broken 
River 

>80 <50 
WoV (<30) 

5 yrs  
(15 
yrs) 

Moderate 

Phosphorus 
(mg/L) 

Broken 
Creek 

<0.045 >0.15 0.1 
WoV 
(0.045) 

5 yrs  
(15 
yrs) 

Low to moderate 
(Moderate) 

Broken 
River 

0.1 
WoV 
(0.045) 

2 yrs  
(15 
yrs) 

Low to moderate 
(Moderate) 

Dissolved 
oxygen (%sat) 

Broken 
Creek 

>85% 
<110% 

60–
100% 

Maintain 
current 
conditions 

Ongoi
ng 

Moderate to high. 
High below Flynns 
Weir. 

Broken 
River 

Maintain 
current 
conditions 

Ongoi
ng 

Moderate 

Each year, Goulburn-Murray Water is required to produce a water quality report in 
compliance with the Safe Drinking Water Act 2003. One aim of this report is to highlight 
any incidents which may have posed a threat to the water quality of its storage 
facilities. In the 2010–11 Annual Water Quality Report (G-MW 2011) it was reported 
that during the period of wet weather over the summer, two regional water businesses 
were unable to dispose their treated waste water through irrigation of land, and 
eventually the businesses filled their onsite waste water storages to capacity. 
Emergency discharge licences under Section 30A of the Environmental Protection Act 
1970 were granted to G-MW for the business to discharge the excess treated waste 
water into the waterways within the catchment. The businesses had to undertake water 
quality and quantity monitoring and all downstream users were notified (G-MW 2011).  
Such discharges pose significant threats to water quality by increasing the nutrient load 
in the waterways and altering turbidity levels, amongst other risks, which can also have 
indirect impacts such as developing untimely blue-green algae blooms which need to 
then be managed and controlled.  

At the time of the Regional River Health Strategy review (GBCMA 2010) the Goulburn 
Broken catchment was still in the early stages of recovery from the 2006 and 2009 
bushfires which had devastated the landscape. These natural disasters had significant 
impacts on water quality; fire recovery management has been of utmost importance in 
the development of catchment strategies over recent years.  
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(ii) Ecological conditions 

The Goulburn Broken catchment has significant ecological value in its pockets of native 
vegetation — which include River Redgum forest and woodland communities, and 
provide breeding ground for many waterbirds. The wetlands within the catchment are 
nationally and internationally recognised as important environment assets.  

The Barmah-Millewa Forests in the Goulburn Broken catchment is listed under the 
Ramsar Convention as a wetland of international importance, and it is also listed in the 
Register of National Estate. These wetlands cover 29,000 ha. The Directory of 
Important Wetlands in Australia (EA 2001) identifies 10 wetlands (including the 
Barmah-Millewa Forests) in the Goulburn Broken catchment as nationally important. 
They include Broken Creek, Kanyapella Basin and the Lower Goulburn River 
Floodplain, which spans 13,000 ha from 150 km downstream of the Goulburn Weir to 
the Murray confluence. Six of the wetlands identified in the Directory are also listed 
under the Japan–Australia Migratory Birds Agreement (JAMBA) and/or the China–
Australia Migratory Birds Agreement (CAMBA) (GBCMA 2005).  

Three rivers in the catchment are identified as Heritage Rivers due to their 
environmental and social importance. Goulburn River supports intact River Redgum 
open forest and woodland and contains significant habitat for vulnerable wildlife 
including Squirrel Gliders and Murray cod. Big River and Howqua River both support 
habitat for the Spotted Tree Frog. They are also valued places for social activities such 
as fishing and canoeing.  

The GBCMA’s Regional River Health Strategy (GBCMA 2005) found there to be rare 
and threatened fauna species along 85% of the length of each of the Goulburn and 
Broken basins. A total of 60 species were identified, including three amphibian, 34 bird, 
11 fish, two invertebrate, seven mammal and three reptile species. Rare and 
threatened flora species were much less widespread, being found along only 14% of 
the waterways in the Goulburn basin, and 50% of the length of the Broken basin. A 
total of 42 rare or threatened flora species were identified.  

The condition of macroinvertebrate communities in the catchment has previously been 
rated “medium”–“excellent” (GBCMA 2005). It is a different story however for fish 
communities. The ratings for native fish communities varied across the catchment, with 
31% of lengths of streams having a “good”–“excellent” rating, and around 28% of 
stream having “poor”–“very poor” rating for native fish. Very little of the catchment was 
found to be unaffected by introduced fish, with only 2–3% of the basins’ streams rated 
to be in “good” or “excellent” condition (GBCMA 2005). The Murray-Darling Basin 
Commission Sustainable Rivers Audit rated the overall health of river systems across 
the catchment as being “very poor” (MDBC 2008).  

Riparian vegetation was also assessed in the Regional River Health Strategy (GBCMA 
2005); about 25% of the reaches in the Goulburn Broken catchment were found to 
have “poor” or “very poor” Riparian width, around 45% were found to have “poor” or 
“very poor” Riparian continuity, and most of the basin was found to have “medium” to 
“poor” structural intactness.  

In 2010–11, 212.2 GL of the catchments’ Environmental Water Allocation was released 
to manage dissolved oxygen levels in the Broken Creek and lower Goulburn River, and 
to maintain low flows in the lower Goulburn River, and to aid the breeding of waterbirds 
in the Barmah-Millewa Forest (GBCMA 2011). 
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During 2012–13, up to 59,000 ML and 231,937 ML of Commonwealth Environmental 
Water were made available for use in the lower Broken Creek and Goulburn River, 
respectively. This has hugely increased from the 2011–12 period, when only 
30,000 ML and 96,900 ML were respectively made available because of the increased 
amount of rainfall in the catchment. This environmental water will help to facilitate fish 
movement, especially during migration and breeding, and maintain native fish habitat 
by marinating optimal levels of dissolved oxygen and restricting excessive aquatic plant 
growth (CEWO September 2012).  

Major threats to the river systems in the Goulburn Broken catchment are identified in 
the Regional River Health Strategy, including (GBCMA 2005): 

• stock access — with 76% of the Goulburn basin and 89% of the Broken basin 
affected, 

• hydrological deviation found to be “extreme” or “extensive” over 23% and 43% 
of the total length of the Goulburn and Broken basins respectively. Hydrological 
deviation is based on the hydrology deviation index in the Index of Stream 
Condition, which consists of three key indicators, namely Amended Annual 
Proportional Flow Deviation which looks at the difference between natural and 
existing monthly flows, and catchment permeability, and the presence of 
hydroelectric power stations.  

• barriers to fish migration — 62% and 69% of the length of the Goulburn and 
Broken basins were rated as “High” or “Very High” threat, 

• condition of the streamside zone — threat level was rated “High” or “Very High” 
over 27% and 30% of the Goulburn and Broken basins, respectively. The 
condition of the streamside zone is defined in terms of width, longitudinal 
continuity, structural intactness, cover of exotic vegetation, regeneration of 
native species, and billabong condition.  

As a part of a national assessment of water stress in catchments, SKM (2012) 
categorises the Broken River as one of the ‘least water stress-impacted basins’, 
whereas the Goulburn River is categorised as one of the ‘most water stress-impacted 
basins’. The basins were ranked in terms of hydrological impact, which was calculated 
using either the average or minimum score of the hydrological indicators used in the 
study, such as mean annual flow, monthly variation, high flood flows, low flow duration 
and seasonal period.  

(iii) Legislation and regulations 

The Goulburn Broken Catchment Management Authority (GBCMA) is a statutory 
authority established under the Victorian Catchment and Land Protection Act 1994. 
The CMA has developed and implemented a Regional Catchment Strategy, which 
provides a strategic framework for the alignment of sub-strategies which are used to 
action the long-term objectives for improving and maintaining natural resources in the 
Goulburn Broken catchment (Table 38). 

(iv) Hydro-climate conditions 

Over the past 15 years the Goulburn Broken catchment has experienced highly 
variable rainfall and river flows. From 1997 to 2006, average annual rainfall in the 
Goulburn Broken catchment has been about 15% lower than the long-term average 
(1895 to 2006) (CSIRO 2008a). Water flows were lower than the worst case predicted 
as recently as 2004, so water availability has been low for rivers and wetlands which 
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has put aquatic environments under severe pressure; threatened native species have 
experienced declines (Miles et al. 2010). However, from late 2010 onwards to early 
2012 the catchment has experienced increased rainfall and flooding with La Nina 
weather conditions present. 
 

Table 38. Summary of relevant Regional strategies in the Goulburn Broken Catchment 
(adapted from Miles et al. 2010) 

Goulburn Broken Regional Catchment Strategy 2003 (Updated 2011) Overall 
 

Dry Landscape Strategy 
2008–11 

An integrating strategy 

Shepparton Irrigation Region 
Catchment Implementation Strategy 

1990–2020 
An integrating strategy and action plan 

Integrating 

Issue-based sub-strategies and action plans: 

• River Health Strategy 2005–15 (including Addendum 2010) 

• Floodplain Management Strategy 2002 

• Water Quality Strategy 1997–2027 

• Shepparton Irrigation Region Farm and Environment, Surface and 
Sub-surface Action Plans 2007 

• Dryland Salinity Management Plan draft 1990–2050 

• Biodiversity Strategy 2010–15 

• Native Vegetation Management Strategy 2000–30 

• Strategic Plan for Integrating Native Biodiversity 2004–07 

• Climate change position paper 2007 

• Invasive Plants and Animals Strategy draft 2010 

• Soil Health Strategy Draft 2002 

• Landcare support Strategy 2004–09 

• Monitoring, Evaluation and Reporting Strategy 2004–09 

Theme or issue 

The climate in the Goulburn Broken catchment is expected to get hotter and drier with 
the effects of climate change. This is likely to lead to lower average rainfall, but also 
great climate variability with more rainfall events, fewer frosts, and more hot days 
(Miles et al. 2010). With greater climate variability there is a higher risk of fire, floods 
and drought. High water temperatures and reduced stream flows could affect water 
quality, habitat values for aquatic and riparian species, and productive and recreational 
use (GBCMA 2012).  

Climate changes are expected to affect surface water flows, the composition, 
abundance and distribution of weed species, and the process of pollination. These 
alterations will influence the compositions of ecosystems and the spatial distribution 
and abundance of species and communities (Miles et al. 2010).  

Table 39 summarises the impacts of different possible future scenarios for the 
Goulburn  Broken region. The scenarios are developed to represent different climate 
conditions combined with either current or possible future development levels. For 
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Scenario ‘D’, the projected growth in commercial forestry plantations is negligible. The 
total farm dam storage volume is projected to increase by 8.7 GL (8%) by ~2030 which 
would have minor impact (<1%) on river inflows. Groundwater extraction is expected to 
grow by 67% by 2030 to become around 16% of total water use. Average stream flow 
reduction of 37 GL/year (12 GL/year from groundwater extraction outside the Southern 
Riverine Plains area) is projected. 

Table 39: Summary of CSIRO climate scenarios (adapted from CSIRO, 2008) 

 Mean 
Annual 
Rainfall, 
mm  

Modelled 
Runoff, 
mm  

Evapo-
transpiration 

Surface 
Water 
Available 

Water 
Diversions 

Relative 
Level of 
Water 
Use 

Scenario ‘A’ – Baseline: Historical Climate & Current Development 
 764  

(1500 
south to 
450 
north) 

CV: 0.22 

149  

(400 
south to 
15 north) 

CV: 0.52 

 3233 
GL/year 

1099 
GL/year to 
GB, plus 
507 
GL/year to 
Campaspe 
&Loddon-
Avoca 

50% 

Scenario ‘B’: Recent Climate & Current Development 
Climate similar to that 
of last 10 years.  

Floodplains would 
cease to receive large 
flood events and there 
would be an increase 
in undesirably low 
flows. 

15% 
lower 

41% 
lower 

 -41% -25% to G-
B, and -
25% to 
other 
regions 

 

63% 
(+13%) 

Scenario ‘C’: Future Climate & Current Development 
Climate projections 
for 2030, from 15 
GCMs – median ‘best 
estimate’, wet variant 
and dry variant. 

- CDry: continuation 
of recent 
conditions,  

- CMid: Reduction in 
flooding and 
increase in low 
flow,  

- CWet: little change 
from current. 

CDry: -
19% 

CMid: -
4% 

CWet: 
0% 

CDry: -
44% 

CMid: -
13% 

CWet: 
2% 

CDry: -12% 

CMid: -2% 

CWet: 0% 

CDry: -
45% 

CMid: -
14% 

CWet: -
3% 

CDry: -
32% out of 
region.  

CMid: -6% 
to G-B, and 
-5% to 
other 
regions.  

CWet: 0% 
out of 
region.  

CDry: 
21% (-
29%) 

CMid: 
54% 
(+4%) 

CWet: 
49% (-
1%) 

Scenario ‘D’: Future Climate & Future Development  
Scenario ‘C’ plus 
developments 
including expansion of 
farm dams and 
commercial plantation 
forestry, increase in 
GW extraction, and 
also improvements in 
water use efficiency.  

DDry: -
19% 

DMid: -
4% 

DWet: 
0% 

DDry: -
44% 

DMid: -
14% 

DWet: -
3% 

DDry: -12% 

DMid: -1% 

DWet: 1% 
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At present surface water extraction within the catchment is very high, with 50% of 
available surface water being diverted for use or transferred for use in other water 
regions (CSIRO 2008a). Under the ‘best estimate’ (CMid) 2030 climate conditions, the 
average surface water availability would be reduced by 14% and diversion would 
decrease by 5% (Table 40).  

(v) Bushfire impact 
Over a third (325,823 ha) of the Goulburn Broken catchment’s woody native vegetation 
was burnt in the 2006 and 2009 bushfires (according to spatial data from the Dept of 
Sustainability & Environment); the upper part of the catchment is still recovering from 
the 2009 ‘Black Saturday’ bushfires. The 2009 fires burnt 190,000 ha, 8% of the entire 
Goulburn Broken catchment, including 2845km of stream frontage and 212 km of 
native vegetation along major rivers (Miles et al. 2010). 

Since the 2009 bushfires, community and institutional reactions are heavily influencing 
planning regulations, in particular with regard to the positioning of new buildings in the 
landscape and the clearing of native vegetation for fire protection (Miles et al. 2010). 
These influences pose a threat to biodiversity in areas which are now deemed fire 
hazards to the local community.  

In future climatic conditions, the risk of occurrence and severity of bushfires is likely to 
increase because of expected warmer and drier weather, as well as human impacts 
(Miles et al. 2010). 

(vi) Urban water demand 

Urban water use in the Goulburn Broken catchment is very small compared to irrigation 
water use (CSIRO 2008a). Current annual urban water use is around 40 GL (CSIRO 
2008a). However, the population is growing rapidly in the region, at a rate of 1.23% (or 
2600) each year, which is marginally higher than the average Victorian population 
growth rate. By 2026 it is expected to reach 255,500 (Monticello 2012). The Goulburn 
Valley Water’s Water Supply Demand Strategy 2012–2060 (GVW 2012a) highlights the 
way water demand in the Goulburn Valley region is forecasted to change over the next 
50 years (Table 40). It may also be relevant to consider the impacts of wider population 
growth and climate change on the use of the ‘Sugarloaf’ pipeline to transfer water 
resources from the catchment to Melbourne (MW 2012).  

Table 40. Changes in water demand in the Goulburn Valley between 2011 and 2060 
(adapted from GVW 2012b) 

Demand Component        2011 (ML)         2060 (ML) 
Residential  13,634 23,158 
Commercial  3,836 5,125 
Major Customer  6,479 6,479 
Distribution System Non-Revenue 2,392 3,563 
Headworks Non-Revenue 2,941 4,056 
Total 29,281 42,380 
 

(vii) Land-use changes  
Storage capacity of small farm dams used for irrigation and stock and domestic 
purposes is estimated at 105 GL across the catchment (CSIRO 2008a), and future 
development is thought to be minimal because of efficiency improvements.  
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Land use changes can be both a threat and advantage for biodiversity. For example, 
the GBCMA believes that the general landholder in the catchment now has a better 
understanding of the needs of biodiversity, and there has been a parallel improvement 
in the uptake of environmental projects and work on private land (Miles et al. 2010). 
Social adjustment of farming practices to incorporate biodiversity enterprises, such as 
integrated farm forestry, may help to improve the condition of the local environment; 
emerging markets for carbon may manifest in carbon sequestration schemes which 
support biodiversity conservation.  

Changes to energy markets and resources may also impact on the land use within the 
catchment because the search for alternatives to fossil fuels may result in changes to 
agricultural practices as well as products. They may also influence living preferences 
and tourism (Miles et al. 2010). 

(viii) Adaptation policies 

(a) Irrigation efficiency programs 
Implementation of water delivery and on-farm irrigation efficiency measures that save 
water which can be used to meet environmental, economic and social needs (GBCMA 
2012) has occurred within the catchment over recent years. These savings have been 
part of the Connections Project (formerly the Northern Victoria Irrigation Renewal 
Project, NVIRP) and the Farm Water Program.  

The Victorian and Australian Governments have made a $2 billion investment to 
upgrade and rationalise irrigation water delivery systems in the catchment, resulting in 
water saving for the benefit of irrigators and the environment (Miles et al. 2010). In July 
2012, the NVIRP merged into Goulburn-Murray Water to deliver that company’s 
Connections Project (GVW 2012a).The project was originally set up in 2007 to manage 
and implement the modernisation of the irrigation system supplying water to the 
Goulburn Murray Irrigation District (GMID), covering 68,000 km2. It was estimated that 
up to 900 GL of water was being lost in the irrigation system due to leaks, evaporation 
and inefficiencies before this investment. The work aims to save up to 425 GL per year 
to increase the water efficiency of the irrigation system from 70% up to 85%. In the 
Central Goulburn region, 902 gates, 1576 meters and 50 km of channel remediation 
had been completed between 2008 and July 2012, and 95 meters and a further 16 km 
of channel remediation were planned for the remainder of 2012 (G-MW 2011).  

The GBCMA has led the Farm Water Program, and in Round 1 of the program (2010–
11), 149 irrigation projects were funded across the Goulburn Murray Irrigation District. 
The Australian Government contributed $21.1 million, and the NVIRP contributed a 
further $16.4 million (GBCMA 2011). A total of 9 GL of water was saved and 
transferred to the Australian Government and NVIRP. This water saving is being used 
to address salinity issues, environmental water flows and improving river health.  

(b) Urban Demand management 
Water Efficiency Labelling and Standards (WELS) Scheme: Australia’s water efficiency 
labelling campaign, WELS, allows consumers to compare the water efficiency of 
products such as showers, taps, toilets and washing machines. The scheme is 
designed to encourage consumers to buy water saving products (GVW 2012b).  

Permanent Water Savings Rules (PWSR): These Rules are set out as a series of 
common sense rules that customers of Victorian Water Authorities are obliged to follow 
so they do not waste water on a daily basis. The rules are in place to encourage 
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efficient use of water at all times, without restricting consumers’ choice and flexibility. 
The rules include using fitted trigger nozzles on hoses, using watering systems for 
gardens and lawns between the hours of 6 pm and 10 am, and not permitting hosing 
down of driveways, paths, concrete, paved areas or timber decking except in limited 
circumstances (GVW 2012b).  

Water Restrictions: Goulburn-Valley Water implements water restrictions by law when 
necessary. These restrictions vary from Stage 1 to Stage 4 (GVW 2012b).  

Use of Recycled Water: Recycled water is used by agricultural enterprises managed by 
Goulburn Valley Water as well as other third party users. There is increasing interest in 
the use of recycled water for irrigation, and third party agreements for the use of 
recycled water have been created with farming enterprises and golf clubs. To maximise 
this use, winter storage lagoons have been constructed at all Wastewater Management 
Facilities (WMFs) and land has been made available for irrigation; as a result of this 
most WMFs now experiences full re-use of recycled water (GVW 2012b).  

(ix) Water quality and aquatic ecosystems protection 

Water buybacks: The proposed Basin Plan from the Murray Darling Basin Authority 
(MDBA 2012a) included the concept of water buybacks. The Basin Plan aims to re-
balance the water needs of the environment alongside other uses, and to do this it has 
defined new volumetric limits (sustainable diversion limits) on water use (MDBA 
2012b).  

The Basin Plan, in the context of the Goulburn Broken catchment area: Between 2009 
and 2011, a total of 245 GL/year has been recovered from the Goulburn Broken 
catchment: 75 GL/year from NVIRP Stage 1, 166 GL/year by Australian Government 
water purchases and the remaining 4 GL/year by Australian Government infrastructure 
projects. Further work is still needed, and the Basin Plan suggests that a further 99 
GL/year needs to be returned to the environment in the Goulburn Broken catchment. 
The NVIRP Stage 2 is, however, expected to recover an extra 214 GL/year which will 
meet the Basin Plan environmental water requirements (MDBA 2012b).  

The water recovered through the Basin Plan buybacks and the NVIRP efficiency 
improvements will benefit the lower floodplain, with its wetlands of national and 
international importance, as well as benefiting the river channel itself. For the lower 
floodplain, the aim is to increase the frequency of flows to the key wetlands to improve 
the health of reed beds and River Redgums, provide habitat for migratory and native 
waterbirds and help to support native fish populations, including the Murray Cod and 
Trout Cod. Note that these increased floods are not planned to impact upon 
communities built upon the floodplains (MDBA 2012b). 

(x) Education programs 

GVW and GBCMA have been long term sponsors of the Goulburn Broken Waterwatch 
program (GVW 2012b) which raises awareness of water quality issues and helps to 
encourage practical solutions from within the community, to help to improve the water 
quality in the catchment. GVW is also involved in programs such as National Water 
Week which also helps to raise awareness of water saving solutions and water quality 
issues (GVW 2012b). 

(xi) Regional Catchment Strategy 
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The strategic objectives of the GBCMA Regional Catchment Strategy (GBCMA 2012) 
include: 

• adapt to water policy reform, 

• adapt to land-use change, 

• adapt to climate variability, 

• adapt to increased farm productivity, and 

• strengthen partnerships. 

Table 41 outlines the long-term objectives (20–30 years) of the Regional Catchment 
Strategy regarding waterway and floodplain condition. Table 42 highlights some 
examples of the adaptive management measures which may be put in place, through 
the relevant sub-strategies and in partnership with the relevant authorities, in order to 
address the strategic objectives. These measures are some of those that refer directly 
to the health of waterways in the Goulburn Broken region.  

(xii) Climate change research 
As part of a larger project to undertake ecological risk assessments, funding has been 
provided to GBCMA to undertake a project looking at impacts of climate change on 
waterway values, in particular water quality. The project is exploring the impact and 
location of changes on waterway values and current programs (Feehan 2012a). The 
risks of crossing water quality thresholds in an environment of climate change, and 
their effect on waterway values and current programs, are also being considered from 
a number of perspectives: 

• likelihood of crossing the threshold 

• consequence of crossing the threshold 

• managing the likelihood and consequence. 

The project is also exploring the concepts of resilience and thresholds to assist in 
answering risk management questions and what the consequences of crossing 
thresholds are for ecosystems. 
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Table 41. Long term (20–30 years) objectives of the GBCMA Regional Catchment Strategy 
regarding waterway condition (Miles et al. 2010). 

Salinity Keep increases to salinity levels of the River Murray at Morgan at or 
below 8.9 EC. 
Ensure no net increases in stream salinity in the Goulburn Ricer 
upstream of Goulburn Weir. 
Prioritise protection of foothills and river valleys of highland areas from 
salinisation threatening significant terrestrial and aquatic assets. 

River Health 350km of river maintained in excellent or good condition. 
Ecological flow objectives met n high value reaches. 
Nutrient loads reduced or improved. 
Riparian condition protected or enhanced along 550 km of river. 
Instream habitat enhanced or reinstated along 140 km of river. 

Wetlands Maintain extent of all wetlands types at 2003 levels. 
Improve conditions of 70% of wetlands by 2030 (benchmark 2003). 
Strategic approach to managing the threat of saline GW on wetlands 
within the SIR documents about protecting the assets from rising 
watertables.  

Water Quality 1996 target: reduce potential phosphorus load by 65% by 2016, by 
reducing phosphorus loads from: 
—irrigation drains by 50%, 
—dryland and diffuse sources by 20%, 
—waste water management facilities by 80%, 
—urban stormwater, 
—intensive agricultural industries and local water quality issues. 

Floodplains Reduce the impact of flooding on the built environment. 
Provide the ecosystems with natural flooding patterns where 
appropriate. 

 

Table 42. Strategic objectives, Strategic priorities and Adaptive management measures 
directly relating to waterways and wetlands (GBCMA 2012) 

Management 
measures 

What may these 
look like? 

Relevant sub-
strategy 

Partners 

Adapt to water policy reform 
Water delivery to waterways and wetlands 
Plan, deliver and 
monitor 
environmental water 
delivery to improve 
the condition of 
priority waterways 
and wetlands 
 

Meet Ramsar 
obligations for 
Barmah National 
Park including 
provision of natural 
flooding patterns 

RRHSS Commonwealth and 
Victorian 
Environmental Water 
Holders, DSE, Parks 
Victoria, Yorta Yorta 
Nation, MDBA, G-
MW 

Modernise water 
delivery on irrigated 
land to provide 
ecological and 
productivity benefits 

Continue to 
implement the Farm 
Water Program for 
ecological and 
agricultural 
production benefits 

SIRCIS Landholders, North 
Central and North 
East CMAs, DPI, 
DSE, G-MW, Dairy 
Australia, Northern 
Victorian Irrigators, 
Murray Dairy, 
SEWPaC 

 
Adapt to land-use change 
Managing land develop risks 
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Management 
measures 

What may these 
look like? 

Relevant sub-
strategy 

Partners 

Manage wastewater 
treatment and 
stormwater runoff to 
minimise pollutants 
to urban waterways 
and wetlands 

 WQS GVW, EPA, 
local 
government 
 

Flood management 
Understand more 
about the nature of 
flooding to manage 
its impacts on the 
natural and built 
environments 

 FMS G-MW, local 
government, 
GVW 

Adapt to climate variability 
Adapting to climate variability risks 
Factor risks of 
climate variability 
and identify 
adaptation strategies 
in GBCMA plans 

Undertake risk assessment for specific 
biodiversity assets to determine 
priorities for investment. 
Seek research into the effects of 
climate change on native forests.  
 

CCIS  

Contribute to public 
land fire 
management plans 
to minimise loss of 
biodiversity  

Input into a strategic approach to 
planned burning in Barmah that 
considers ecological values. 
Develop an education campaign that 
targets new landholders. 
Identify where the CMA can have 
influence and build partnerships with 
public land managers, and nurture 
partnerships with DSE and Parks 
Victoria so as to have input as 
appropriate. 
 

CCIS DSE, Parks 
Victoria, 
Traditional 
Owners, CFA, 
local 
government, 
community 
 
 

Climatic events response and recovery 
Partner in planning 
and implementing 
flood, fire and 
drought response 
and recovery  

Introduction of new landholder 
packages for land management.  
Identify risks to drought refuge areas 
and develop mitigation plans.  

CCIS DSE, DPI, local 
government, 
water 
authorities, 
Parks Victoria, 
CFA, SES 

Low carbon future opportunities 
Identify where 
carbon sequestration 
activities provide 
environmental 
economic and social 
benefits 

Identify areas no longer under 
irrigation that may be suitable for 
biodiversity planting for carbon 
sequestration and diversification of 
income. 
Implement the NRM Planning in 
Climate Change Initiative. 

CCIS Landholders, 
community 
groups, 
Australian 
Government, 
DPI, industry 
 

Adapt to increased farm productivity 
Increasing biodiversity in agricultural land use 
Create awareness 
and acceptance of 
land management 
practices that protect 
and improve 
terrestrial and 
aquatic habitat 

Provide education opportunities 
through Conservation Management 
Networks 

BS, 
IPAS 

Community 
groups, 
landholders, 
local 
government 
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Management 
measures 

What may these 
look like? 

Relevant sub-
strategy 

Partners 

Identify 
environmental 
stewardship 
opportunities for land 
managers 

Support community-led projects like 
the Superb Parrot, the Grey Crown 
Babbler and Regent Honeyeater 
projects.  

BS Community 
groups, Trust for 
Nature, local 
government, 
landholders 

Work with 
landholders to 
protect and improve 
biodiversity on 
private land and build 
understanding of its 
contribution to the 
landscapes.  

Education campaigns to target high 
value assets 
Implement a biodiversity tender that 
protects and enhances habitat, and 
provide landholders with incentives to 
improve the condition of terrestrial, 
riparian and wetland habitat. 

BS, 
IPAS, 
SHS 

DPI, G-MW, 
DSE, 
landholders, 
community 
groups and 
networks, Trust 
for Nature. 
 

Strengthening Partnerships 
Partnering public land managers 
Undertake works 
with public land 
managers to improve 
waterways and 
wetlands, including 
private landholders 
managing Crown 
land frontage 

Provide landholder with incentives to 
improve riparian vegetation 
management.  
Research trials on different riparian 
management regimes in collaboration 
with private land managers on river 
reaches.  
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7.1.1 Similarities and differences between catchments 
There are a number of similarities between the Upper Murrumbidgee catchment and 
the Goulburn Broken catchment.  

• Both catchments have highly variable ecological and water quality. Upland 
areas are in good ecological condition and have good water quality, while 
lowland areas have poorer ecological condition and water quality. 

• Reduction in native fish species abundance is an issue in both catchments. 

• Rivers in both catchments are highly regulated. 

• Management authorities in both catchments are actively involved in climate 
change research and have put, and / or are putting, policies in place for climate 
change adaptation. 

There are also differences between the Upper Murrumbidgee catchment and the 
Goulburn Broken catchment. 

• The Goulburn Broken catchment is considerably larger than the Upper 
Murrumbidgee catchment: 24,000 km2 vs 13,144 km2. 

• Urban land use is higher in the Upper Murrumbidgee catchment. Therefore, 
effluent discharge and water quality issues associated with urban land use are 
a bigger issue in the Upper Murrumbidgee catchment. 

• Irrigation land use is much higher in the Goulburn Broken catchment. Therefore, 
changes in river flow and water quality issues associated with irrigation are a 
bigger issue in the Goulburn Broken catchment.  

• Lowland wetlands are important ecological assets in the Goulburn Broken 
catchment (e.g. Barmah Millewa Forests). These types of wetlands do not exist 
in the Upper Murrumbidgee catchment. 

• The purpose of river regulation differs between the two catchments. In the 
Upper Murrumbidgee catchment, river regulation is primarily for urban water 
supply, while in the Goulburn Broken, flow regulation is primarily for irrigation 
supply. Hence, the purpose, timing and magnitude of flow releases from water 
supply dams are also different between the two catchments.  

7.2 Methods 

7.2.1 Workshop 

A workshop was held on the 31st October 2012 in Shepparton with attendees from the 
Goulburn Broken CMA, Goulburn Murray Water, Goulburn Valley Water and 
Department of Sustainability & Environment. The objectives of the workshop were to:  

1. identify the transferability of the approach and learnings from the development of 
this project’s model framework (cognitive transferability); 

2. review the draft BN models developed for the Upper Murrumbidgee catchment for 
their applicability to the Goulburn Broken catchment and identify model 
modifications required to make them more broadly applicable (technical 
transferability);  

3. identify data sets and information that will enable revised models to be populated. 
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In the future the models will be populated using data sets supplied by the Goulburn 
Broken CMA and model tested using sensitivity and uncertainty analysis techniques to 
determine the confidence in the model predictions. The workshop provided an 
opportunity to discuss and share knowledge on the transferability of the modelling 
framework designed for the Upper Murrumbidgee catchment to the Goulburn Broken 
catchment.   

Two aspects of transferability were considered in the process of designing the 
workshop (Grafton et al. 2012):  

• cognitive transferability focuses on the transferability of the reasoning and 
judgement behind the model development; and 

• technical transferability focuses on the transferability of the model structure, 
endpoints and scenarios.  

Both cognitive and technical transferability are seen as important components of 
assessing model transferability between catchments (Grafton et al. 2012). During the 
workshop, two key questions were addressed: 

1.  Cognitive transferability — are the key learnings from developing the models in the 
Upper Murrumbidigee catchment transferable and relevant to the Goulburn Broken 
catchment? 

2.  Technical transferability — does the model structure (both the detailed conceptual 
model and the refined model) need to be adjusted to be specific to the Goulburn 
Broken catchment? 

7.2.2 Modelling 
A more broadly applicable model framework was proposed based on input from the 
Shepparton workshop. This model was compared with the Upper Murrumbidgee 
modelling approach and key differences highlighted. 

7.2.3 Cognitive transferability 

Question: Are the key learnings from developing the models in the Upper 
Murrumbdigee Murrumbidgee River Catchment transferable and relevant to the 
Goulburn Broken Catchment? 

Scenario-based approach 

The scenario approach has been used within the Goulburn Broken region and is 
supported because of its ability to manage complexity and provide input to 
management decisions. Previous scenario planning approaches include the irrigation 
futures project (Robertson et al. 2007). In terms of climate models, more than a few 
models (GCM outputs) are considered to provide too much information and complexity 
to consider within a management context (similar to the Upper Murrumbidgee 
catchment).  

There is preference to use four scenarios:  Wet, Average, Dry and worst on record, and 
compare these with historical behaviour. Learning from post-fire rainfall impacts on 
water quality has come from the 2003, 2006 and 2009 fires in the two catchments. 
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Endpoints 

Ecological endpoints need to be framed in a way that is directly relevant to 
management. Identifying shifts in community structure is interesting, but not particularly 
relevant from a management perspective. For instance, if macroinvertebrates are used 
as the endpoints, then scoring systems that indicate ‘health’ (such as AUSRIVAS O/E 
scores; or Index of Stream Condition scores) are more helpful to managers from the 
perspective of identifying strategies. For the Goulburn Broken catchment, a range of 
endpoints might be chosen, with a range of ecological assets of interest within regions: 

• Fish — both species and communities 

• Platypus 

• Water rats 

• River redgums 

• Blue Green Algae 

• Macroinvertebrates 

Given that tourism within both catchments is also important, recreational use, drinking 
water and aesthetic features of the water are also of interest as an endpoint to the 
modelling framework. 

It is likely that the drivers of the ecological responses will vary depending on both 
catchment and possibly region — particularly in an area like the Goulburn Broken 
catchment where regional differences are more pronounced than in the Upper 
Murrumbidgee catchment. For example, in the Goulburn Broken catchment there are 
differences in land use between upland and lowland areas (lowland areas have 
irrigation). Furthermore the Goulburn River is highly regulated compared to the Broken 
River. This means that a different model structure will be defined each time the 
framework is used.  

Other points arose during the workshop. 

• To enhance model transferability a generic model of water quality responses 
with ‘add on’ ecological response models was suggested. 

• Understanding the water quality changes from a global perspective has greater 
value to the CMA and the water authorities in their regional planning activities. 

7.2.4 Technical transferability 

Question: Does the model structure (both the detailed conceptual model and the 
refined model) need to be adjusted to be specific to the Goulburn Broken catchment? 

Model simplification based on identification of key drivers (bottom-up model structuring) 
was seen as an appropriate approach and important if the endpoints were clearly 
defined, but it results in models that are not easily transferred and therefore the 
technical transferability was considered to be limited.  

The current model framework for the Upper Murrumbidgee catchment, and the 
modified framework for the Goulburn Broken catchment, are shown in Figures 66 
and 67, at the end of this section.   
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Details of model framework additions, removals, other modifications and considerations 
are outlined below.  

Model framework additions 

• Irrigation drain returns 

• Intensive land use will need to be modified to reflect regional land use 
characteristics. Irrigation activities will need to be separated to identify 
horticulture and dairy farming as separate categories.   

• The source of water:  
o Water from a release from Lake Eildon is different in quality from water 

that results from runoff from the Acheron tributaries or the 
Sunday/Mollison’s tributaries (i.e. Goulburn River tributaries below 
Eildon Dam). 

Model framework removals 

• Effluent management options are not important within the region. 

• pH removed — not seen as a water quality issue in the Goulburn Broken 
catchment. 

Other model framework modifications and considerations 

Regions: A regionally based approach is appropriate: Eight regions 

1. Alpine 

2. Upper Goulburn 

3. Goulburn Tablelands 

4. Goulburn Irrigation  

5. Upper Broken River 

6. Lower Broken River 

7. Broken Creek Anabranch 

8. Broken Creek Irrigation 

Water quality attributes needed for a generic model: 

• DO 

• TN 

• TP 

• EC 

• Turbidity 

Water quality thresholds: 

• State Environment Protection Policy (Water of Victoria) defines water quality 
objectives that would be useful to use. 

• ANZECC guidelines are also helpful. 

• Tiller & Newell (1995) — Victorian nutrient guidelines. 
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Endpoints of interest: 

• Ecological asset based. 

Management scenarios to include: 

• environmental flows, 

• riparian vegetation management, 

• barriers (fish), 

• management of exotic species (fish and riparian weeds), 

• sediment management (erosion control; pasture management; riparian areas). 

Additional drivers to consider: 

• SKM report identified ‘Days since last rainfall’ as being a predictor of water 
quality (suspended solids) in the Goulburn Broken Region. This was not tested 
in the Upper Murrumbidgee catchment. 

Data considerations for the Goulburn Broken catchment: 

• Accurate land use data for the catchment may be difficult to obtain.  

7.3 Conclusions 

The conceptual thinking behind the modelling framework constructed for the Upper 
Murrumbidgee catchment (Figure 68) is generally transferable to the Goulburn Broken 
catchment. However, in terms of technical transferability some changes need to be 
made to the modelling framework to make it applicable to the Goulburn Broken 
catchment.  

In the Goulburn Broken catchment there are differences in land use between upland 
and lowland areas. The upland area of the Goulburn Broken catchment is very similar 
to the Upper Murrumbidgee catchment, while the lowland areas used for irrigation are 
vastly different. Furthermore, the Goulburn River is highly regulated compared to the 
Broken River. This means that at a regional scale a different model structure will be 
defined each time the framework is used.  

The bottom-up model structuring method applied in the Upper Murrumbidgee 
catchment is a scientifically valid method, which leads to a parsimonious and 
manageable model structure. However, this does not facilitate model transferability, 
because of regional differences in management.  
Managers in the Upper Murrumbidgee catchment are interested in ecological 
thresholds and consider it an important part of the process. Managers in the Goulburn-
Broken are less interested in ecological threshold identification and more interested in 
using endpoints that can be easily interpreted by management (e.g. AUSRIVAS O/E 
scores; or Index of Stream Condition scores). The next step for the modelling 
framework to be transferable to the Goulburn Broken is to focus on applying a top-
down model with all water quality endpoints, which can then be linked into component 
ecological response models. However, before this can take place, river flows under 
different climate scenarios for the Goulburn Broken need to be calculated to 
understand the effects of climate change on river flows and water quality within the 
catchment. 
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Figure 116. Example of the Upper Murrumbidgee Catchment modelling framework- invertebrate communities. 
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Figure 117. Modified modelling framework for the Goulburn Broken catchment- invertebrate communities 
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Figure 118. Modelling framework of the project to be transferred other regions. 
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8. KNOWLEDGE GAPS & FUTURE RESEARCH DIRECTIONS 

We have made a number of significant advances, such as identifying thresholds, predicting 
effects of adaptation initiatives, and developing a comprehensive modelling framework for 
ecological response to climate change. In the process, we have identified a number of 
limitations and knowledge gaps. In this section we highlight limitations to methods used and 
key areas that should be prioritised for future research. 

8.1 Improved hydrological prediction 

Current methods for predicting variations in flow regimes in response to climate change 
rely on a scaling approach. Such methods are unable to capture potential long-term 
changes in seasonality, or the long-term fluctuations in the frequency and magnitude of 
extreme events that may arise as a consequence of changing climate (Francis & 
Hengeveld 1998; Jackson et al. 2001). As such, we do not have the models that enable 
us to develop plausible flow time series that can be used to predict the ecological 
consequences of such changes. The use of current models that predict variation in flow 
may limit the ability to represent realistic ecological response to climate change.  

8.2 Limits of data sets  

A key element of this project was to select predictor variables that were significantly 
related to the ecological responses of macroinvertebrate and fish communities. Several 
challenges that that were identified during this process remain unaddressed.  

(i) Limits to using historical data sets for predictive modelling 

Historical data sets for climatic variables (rainfall, temperature, flow) were used to 
provide information about ecological responses and thresholds. In using such data sets, 
there is the assumption that the range of historical conditions observed is sufficient to 
capture patterns that can be used to predict future conditions. However long one’s 
historical datasets, that assumption does not hold if the future climate widely differs from 
historical conditions (e.g. if there are major seasonal shifts or changes in the magnitude 
and frequency of extreme events). To better understand the ecological responses that 
might occur as a result of climate change, research needs to include experiments that 
take account of conditions outside of those experienced historically. 

(ii) Spatial scale of predictor variables and model analysis  
A further constraint was the availability of spatial and temporal data at consistent scales 
for use in predictive models. Climatic and hydrological variables differed in temporal 
scales; other variables (such as water quality, land use and habitat variables) varied in 
spatial scales. It is challenging to combine these variables into one working model: a 
particular example was combining small-scale response variables (e.g. the relative 
abundance of thermophobic taxa) with broad-scale predictor variables (e.g. land use). 

8.3 Limits to methods 

(i) Identifying the optimum number of predictor variables for BN use 

For univariate responses (e.g. O/E scores or Thermophobic taxa relative abundance), 
the shape of the relationship between the ecological response and the predictor variable 
determines the best approach to estimating the threshold (Brenden et al. 2008). In our 
project, we applied Quantile Piecewise Linear regression as a general approach, 
because most results showed a scattered relationship that varied across quantiles. 
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However, for future work, different methods, which adjust better to the specific 
relationship between the predictor and response, should be investigated. 

(ii) Threshold selection and scale 

The selection of predictor variables and relevant thresholds for discretisation was a key 
element determining both the validity and strength of the Bayesian Networks (BNs) in 
predicting ecological response. Changes in thresholds may ultimately change ecological 
outcomes predicted by the models. One important consideration is that thresholds were 
produced taking into account all regions together. When ecological outputs were 
examined by region, some thresholds became inappropriate (for example air 
temperature in the Yass region, see Section 6). From a management perspective it could 
be more useful to explore these thresholds at regional scales. However, this will be 
dependent on appropriate data sets being available. This could be important when 
considering the transferability of this approach (see Section 7). 

(iii) Impossible scenarios and uniform probabilities in BN models 

The Bayesian Network models were developed to link climate scenarios and 
management adaptation alternatives with changes in water quality and quantity and 
relevant ecosystem responses. One issue with using a large number (>5) of input 
variables into the response node is the creation of “impossible” scenarios, or scenarios 
for which historical data do not exist. In these cases the BN prescribes uniform 
probabilities to the conditional probability tables, which in turn limits the ability of the 
model to predict outcomes under such conditions.  

(iv) Inability to capture and model the occurrence of extreme events  
The BN models were found to be effective in modelling relationships between 
environmental predictors and response variables using historical and modelled data. 
One limitation of BN models is that they are ineffective at modelling low probability 
events, such as extreme weather events, which are predicted to increase with changing 
climate. Although these events have low probability associated with them, their impact 
on the environment is likely to be significant in the long and short term. 

8.4 Knowledge gaps and future research directions 

During the project, much time was invested in methods for identifying thresholds for 
predictor variables. We believe we have made a significant contribution to identification 
and selection of thresholds, and we have been invited to prepare a paper for a respected 
journal on this work.   

However, approaches and methods used for such calculations remain an emerging 
science and there are still uncertainties around how to apply thresholds in integrated 
modelling frameworks.  

The selection of ecological response indicators was also a challenge. For example, 
choosing invertebrate taxa or ecological indices that efficiently capture responses to 
adaptation initiatives and climate change was difficult because of the wide range of 
responses observed. In the future the development of a standardised technique for 
dealing with these issues would be grand!  
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  MAPS A.

 

 

Figure A-1. Map of the Upper Murrumbidgee catchment showing the landuse categories used 
in this report. 
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Figure A-2 Map of the Upper Murrumbidgee catchment showing the geology categories used 
in this report. 
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Figure A-3. Map of the Upper Murrumbidgee catchment showing all geology categories. 
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Figure A-4 Map of the Upper Murrumbidgee catchment showing the nineteen regions defined 
in the UM catchment based on Bayesian network analysis. 
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 SCENARIO DRIVERS B.

Table B-1. Scenarios: drivers, themes, outputs, and source of uncertainty 

DIMENSION 
(CATEGORY 
OF DRIVERS) 

Drivers Themes Assumption 
description 

Data 
sources/models 

Scenario 
outputs 

Information 
links to other 
scenarios 

Scenario uncertainty 

HYDRO-
CLIMATE 
CONDITIONS 
 

Climate 
Conditions 
 

-(c1to c30): 30 
seaci climate 
scenarios as 2 
emission 
scenario×15 
gcms 

SEACI emission 
scenarios: 1oc-2oc 
increase in global 
average surface air 
temperature 

SILO climate 
data, daily scaling 
methods, 15 
GCMS, SEACI 
SIMHYD model  

Rainfall 
(mm/day), 
evaporation 
(mm/day), 
flows 
(ml/day) at 
sub-
catchment 
scale 

 GHG emission 
scenarios 
 
assumptions/methods/
parameters/data used 
for gcms and 
downscaling methods 
 
assumptions/methods/
parameters/data used 
for rainfall-runoff 
modelling 

HYDRO-
CLIMATE 
CONDITIONS 
 

Ongoing bushfire 
impact 

Frequent and 
severe 
(catchment scale) 
bushfire 

-Fires are 
stochastically 
triggered when 
particular hydro-
climate conditions 
are met in the 
catchments: Corin, 
Cotter and Bendora 
-Vegetation regrowth 
causes inflows 
reduction to reach 
15% peak reduction 
17 years after a fire 
event 

ACTEW 
vegetation 
modelling, Monte 
Carlo simulation 

Yield 
reduction 
curve (% 
per month) 
 

Hydro-climate 
conditions 

Uncertainty 
propagated from the 
climate scenario 
Assumptions/methods/
parameters/data used 
for fire triggering and 
vegetation modelling 
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WATER 
DEMAND Population 

High growth 
scenario/ACTEW’
s baseline 
population 
scenario 

High growth scenario 
assumes high 
population scenario 
as defined by the 
ABS, plus 1.6% 
increase in 
population to account 
for cross-borders 
supply (e.g. to Yass, 
Goulburn) from 2015 
onwards 

ABS population 
data Capita  

Assumptions/methods/
parameters used by 
the ABS for estimating 
fertility and overseas 
immigration rates   

WATER 
DEMAND 

Water use per 
capita 

ACTEW’s 
baseline water 
use/capita 
scenario 

Per capita 
(unrestricted) 
demand is assumed 
to be a linear 
function of 
evaporation deficit 
(Pan evaporation-
rainfall) 

ACTEW demand 
modelling 
(multiple-
regression model) 

Litre per 
capita 

Climate 
conditions 

Uncertainty 
propagated from the 
climate scenario 
 
Water use profiles 
(e.g. socio-economic 
factors) 
 
The views and 
perceptions that the 
community has about 
climate and water use 

ADAPTATION 
OPTIONS 

Supply 
management 

-S1: Tantangara 
is operational by 
2014 
 
-S2: Tantangara 
is not operational  

-Tantangara is used 
to augment supply 
when: the ACT 
combined storage 
levels are less than 
70%, and there are 
environmental 
triggers to cease 
pumping from the 
Murrumbidgee River  

ACTEW 
supply/demand 
model (REALM) 

  

Uncertainty 
propagated from the 
climate and water 
demand scenario 
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ADAPTATION 
OPTIONS 

Demand 
management and 
source 
substitution  

-D1: Achieving 
ACT Government 
reduction targets 
 
-D2: Not 
achieving ACT 
Government 
reduction targets 

- D1 is ACTEW’s 
baseline demand 
management 
scenario. It assumes 
that by 2023 demand 
will be reduced by 
25% to the levels 
experienced before 
restrictions. 
Reduction is linear 
from 8% in 2005. For 
the period 2023. For 
the period 2023-
2030, no further 
reductions are 
assumed. 
 
-D2: zero reduction 
in demand 

 

Demand 
reduction 
curve (% 
per month) 

Water demand 
per capita 

Uncertainty 
propagated from the 
water demand 
scenario 
 

ADAPTATION 
OPTIONS 

Water quality and 
aquatic systems 

-Environmental 
flows at 
Tantangara 
 

- Flow component: 
Fresh 
(Recommendation 2 
from Expert Panel 
1997 (SSC, 2010) 
 
Flows of 250-350 ML 
day for 2-4 weeks in 
spring/early summer, 
once 
epilimnion 
temperature 
exceeds 16.5  oC 
Will provide 
conditions suitable 

Volumes of water 
calculated by 
water authorities 
in NSW and 
Victoria, by 
following SWIOID 
(2002) 

E-flows 
ML/day 

Supply 
management 

2010-11 was the first 
year that the SSC has 
made environmental 
flow recommendations 
for release from 
Tantangara Dam to 
the Upper 
Murrumbidgee River. 
There are no 
precedents on which 
to build. 
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for spawning and 
subsequent larval 
development for 
Macquarie Perch 
Site: Mittagang 
Crossing 
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Table B-2 A summary of the water supply management policies 

Supply 
management 
options 

Description Trigger conditions Expected 
outcomes 

Exposure to other 
uncertainties (not to be 
included in the scenarios) 

Threats to ecological 
values in the UM 

Links to 
other 
options 

SM1 Enlarge 
the capacity of 
Cotter dam 
(ECD) 

Enlarge the 
reservoir’s 
capacity from 4 
GL to 78 GL  

Ongoing option  

Increase in 
storage capacity 
from 4 GL to 78 
GL  

-delays in the project 
completion (to be 
completed by mid-2012) 

 

-direct evaporation, spills, 
and leaks from the 
reservoir 

Threats to  

Macquarie Perch  

Trout Cod  

Murray Cod  

Two-spined Blackfish 

Murray River Crayfish  

A qualitative risk 
assessment can be 
found in (ACTEW, 
2010) 

AP2 and AP4 
(See Table 
B4) 

SM2 Angle 
Crossing 
(Murrumbidge
e to Googong-
M2G transfer) 

Transferring water 
from the MBG 
River, at a 
location near 
Angle Crossing, 
to Googong 
reservoir 

- Pumping will only 
occur when there is 
sufficient demand for the 
water (for M2C and/or 
potable water supply), 
and when there is 
sufficient water flow in 
the Murrumbidgee 
River.  

 

Also environmental 

Up to 100 
ML/day 

-delays in the project 
completion (to be 
completed by mid-2012) 

 

-river flow, quality and 
storage capacity 

-Barrier to fish 
passage 

-differences between 
the quality  of water 
abstracted and that in 
reservoir 

-Fish virus (EHN) 
transfer 

Reduction in flows 
extending periods of 

AP2 (See 
Table B4) 
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triggers to cease 
pumping – set of rules 
apply 

low flow potential 
affecting Murray Cod 
and Trout Cod 
(endangered fish 
species) 

SM3 
Tantangara 

Purchasing water 
from irrigators 
downstream of 
the ACT (through 
reduction in their 
entitlements from 
Snowy Hydro) 
and transferring it 
to be stored at 
Tantangara  

-If the ACT combined 
storage levels are less 
than a certain level 
(Note: a level around 
70% mark is expected 
but this has not been 
decided yet). 

 

Also environmental 
triggers to cease 
pumping from the 
Murrumbidgee River – 
set of rules 

Volume 
purchased is 20-
25 GL, to be 
supplied at a 
rate depending 
on the capacity 
of pipes 

-negotiation outcomes, 
including: price 
agreements, MDB CAP  

 

- Changes to the trading 
legislation  

 

-Ability to order water when 
needed versus hydro needs 

-The impacts will 
largely depend on the 
mechanism used to 
transfer water from 
Tantangara to the ACT 
storage 

 

-There may be 
favorable ecological 
outcomes due to the 
increase of flow from 
Tantangara to the 
Murrumbidgee River 

AP2 (See 
Table B4) 
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SM4 Tennent 
Dam 

Building a new 
dam on the Naas 
River, 
downstream of its 
junction with the 
Gudgenby River 

A set of climate, political 
and environmental 
triggers 

Supply of 3,700 
ML/year in 
2023. 

 

-The impacts of climate 
change on the Tennent 
catchment inflows. 

-Political drivers 

-Environmental 
consequences 

-community acceptance of 
the economic and 
environmental costs of 
building a new dam 
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Table B-3 A summary of demand management (water conservation) options 

Water 
demand 
option 

Description Trigger Expected outcomes 
Exposure to other 
uncertainties (not to be 
included in the scenarios) 

Links to other 
options 

DM1 Water 
sensitive urban 
design (known 
as smart 
growth) 

 

The program includes the 
implementation of a range of water 
efficiency measures (e.g. rainfall 
tanks, water efficiency fixtures) that 
aim to minimize main water 
requirements, maximize rainwater 
harvest, and maximise the use of 
treated water 

Ongoing 

A 12% reduction in mains water usage 
per capita by 2013, and a 25 % 
reduction by 2023 (compared with 
2003), achieved through water 
efficiency, sustainable water recycling 
and use of 

Stormwater [from 57 in 2008 

GL/year to 54 GL/year in 2013 and to 
50 GL/year in 2023.]; 

 

• An increase in the use of treated 
wastewater (reclaimed water) from 5% 
to 20% by 2013 

The complex constellation 
of psychological and social 
variables that influences 
water use decisions and 
behaviours (including: 
attitudes, habits, lifestyle, 
social norms and water-use 
culture) 

SS2 (See 
Table B3) 

DM2 
Permanent 
water 
conservation 
measures 

The implementation of a range of 
measures, including:  

1. Restrict watering of lawns and 
gardens to morning and evening 
hours, 

2. Ban hosing of hard surfaces, 
including driveways and windows 

3. Control the use of sprinklers for 

On-going  As above 
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dust suppression 

4. Introduce compulsory use of 
trigger hoses for car washing 

DM3 
Temporary 
restrictions 

Introducing compulsory 
conservation  measures (mainly for 
irrigation), such as limiting 
irrigation to 7am/pm and 10am/pm 

on alternate days as per an “odds 
and evens” system, 

Phased 
scheme, 
depending 
on storage 
levels 

 

-Economic costs 

 

-community acceptance 

AP2 (See 
Table B4)  

DM4 
Queanbyean 
Water 
conservation 
Credits 

 

This option would involve the ACT 
Government and Queanbeyan City 
Council setting demand 
management targets that if 
achieved and maintained entitle 
Queanbeyan City Council to 
receive incentive payments from 
the ACT Government.  

  

-The demographics and 
water demand types in 
Queanbyean 

 

-Existing conservation 
initiatives  
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Table B-4 A summary of demand management (source substitution) options 

Water security 
option Description Trigger 

conditions Expected outcomes 
Exposure to other uncertainties 
(not to be included in the 
scenarios) 

Threats to 
ecological 
values in 
the UM 

Links to 
other 
options 

SS1 Water 
purification 
scheme 

Establish a 
water 
purification 
plant to 
produce safe 
drinking water 

A set of climate, 
political and 
social triggers 

25 ML/day (about 9 GL/year), 
and can be upgraded to 50 
ML/day (about 18 GL/year) 

-Community acceptance of recycled 
water 

-Brine management issues (including 
disposal) 

-Issues related to carbon emissions 
and mitigation policies 

 SM1 (See 
Table B1) 

SS2 Stormwater 
harvesting 

Direct use of 
stormwater 
(from existing 
lakes, and 
ponds, and the 
new ponds 
added through 
the expansion 
of suburban 
areas) to 
irrigate sports 
area 

ongoing 

This contributes to: 

A 12% reduction in mains 
water usage per capita by 
2013, and a 25 per cent 
reduction by 2023 (compared 
with 2003), achieved through 
water efficiency, sustainable 
water recycling and use of 

Stormwater [from 57 in 2008 

GL/year to 54 GL/year in 
2013 and to 50 GL/year in 
2023.]; 

• An increase in the use of 
treated wastewater 

-reliability of supply 

-operational risks 

-feasibility of stormwater use (e.g. 
proximity of the irrigated area to the 
stormwater harvesting facility) 

-Issues related to the design and 
construction of new infrastructure 
(e.g. development approvals) 

 DM1 (See 
Table B2) 
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(reclaimed water) from 5% to 
20% by 2013 

SS3 
Groundwater/MAR 

Use of 
groundwater 
for irrigation of 
sports area 

ongoing As above 

-Groundwater contamination issues 

-Impacts of climate change on 
groundwater levels 

-changes to groundwater licenses 

 DM1 (See 
Table B2) 

SS4 Use of treated 
water from FTP 
and Southwell park 
plants 

The use of 
treated effluent 
for irrigation 
(domestic and 
public areas). 
This includes 
on-site 
household 
scale 
treatment and 
centralised 
treatment 

ongoing As above 

-MDB CAP  

-Operational risks 

-Health risks 

-Issues related to carbon emissions 
and mitigation policies 

-The willingness/capacity of 
household for recycling 

 
DM1 (See 
Table B2) 
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Table B-5 A summary of water quality and aquatic species protection options 

Aquatic species protection Description Trigger 
conditions 

Expected 
outcomes 

Exposure to other 
uncertainties (not to 
be included in the 
scenarios) 

Links to other 
options 

AP1 Quality of 
effluent 
discharge  

 

Sewerage 
treatment option: 
Membrane 
bioreactor/ 

Biological 
Nutrient Removal 

Enhance the treatment technology 
by establishing a new BNR plant 
(i.e. screens, tanks) to produce low 
TN/TP effluent  

 

Effluent quality 
(mg/L) (median) 

Ammonia =0.5  

TN= 2 

TP=0.1 

TDS=420 

Economic costs 

Energy use 

Operational risks 

 

Sewerage 
treatment option: 
Upgrading 
LMWQCC 

Upgrade LMWQCC to handle 
additional flows  

Effluent quality 
(mg/L) (median) 

Ammonia =0.2 

TN= 12 

TP=0.15 

TDS=420 

As above  

Salt reduction 
option (TDS-1) 

Enhance the salt reduction 
technology using reverse osmosis  

Effluent quality 
(mg/L) (median) 

TDS=410 

As above  

Salt reduction 
and sewerage 
treatment  option 

No chemical additions into the 
primary process. Anaerobic 
bioreactors to achieve BEPR and 

 Effluent quality 
(mg/L) (median) As above  
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(TDS-2) great TN removal Ammonia =1 

TN= 10 

TP=0.1 

TDS=390 

AP2 
Environmental 
flows 

E-flows at Cotter 

Balance has to be made in the 
Cotter River to ensure both 
requirements can be met: 

- to supply water for domestic 
consumption and, 

- to maintain the health of the 
rivers, and in particular to protect 
the native fish species, Macquarie 
Perch and Two-Spined Blackfish 

 

In the particular case of ECD: 

- a minimum of 34 ML of water per 
day will be guaranteed,  

- cold water pollution will be avoid, 
and, 

- special actions to protect 
threatened species will be carried 
out (e.g., for the native fish species, 
Macquarie Perch, safe upstream 
migration will be allowed and 
artificial rock reefs will be built) 

 

To maintain the 
current status of the 
aquatic ecosystem 
health (in terms of 
algae, 
macroinvertebrates 
and native fish 
populations), or 
restore its status to 
meet the 
community's 
environmental 
values (ACT 
Government, 2006).  

-Economic costs 

 

SM1 (see Table 
B1) 
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E-flows at 
Googong 

Balance between: 

- supply water for domestic 
consumption and, 

- to maintain the health of the rivers 

 As above  SM2 (see Table 
B1) 

E-flow at 
Tantangara 

Release of water has to guarantee : 

- protection of endangered / 
threatened species, being the 
target species Macquarie Perch 

- maintaining of natural habitats and  

- maintaining of wilderness and 
national parks values 

 

- Increasing: 

Depth water in 
channel 

Wetted perimeter 

Velocity and  
turbulence 

Hydraulic diversity 

 

- Reducing 
temperature and 
oxygen stress 

 

- Providing 
opportunities for fish 
movement 

consistent with 
natural conditions 

 

-Removal some silt 
and fine-grained 

 SM3 (see Table 
B1) 
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sediment 

 

-Providing spawning 
opportunities for fish 
that 

utilise clean gravels; 
particularly for 
spawning and 

subsequent larval 
development for 
Macquarie 

Perch 

 

AP3 Erosion and sediment control 
measures  

-Earthworks and structural 
measures to control stream erosion 
and incision processes 

 

-Fencing to manage stock access 
to the stream bank and bed, 
provision of alternative off-stream 
stock watering points 

 

-Fencing of remnant vegetation in 
the riparian corridor 

Ongoing at 
locations 
identified as 
having the 
potential to 
contribute 
sediment and 
nutrients to 
the river 
(Murrumbidg
ee CMA) 

 

-Directly: sediment 
loads in waterways 
will be reduced 

 

-Indirectly: 

Improvements in the 
ecosystem health 
(better water quality 
and higher fauna 
diversity) 

 

-upper guideline 

-Extended drought 
resulting in loss of 
vegetation 

 

SM1 (for the ACT 
component) 
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-Revegetation of native riparian 
vegetation 

 

-Maintenance and enhancement of 
existing stands of native riparian 
vegetation 

trigger values 
recommended by 
ACT Government (> 
10 NTU)  

 

-upper guideline 
trigger value for 
southeast Australia 
(> 25 NTU, ANZECC 
and ARMCANZ 
2000) 

 

AP4 Fish management strategy 

Actions in basis on the MDBC 
(2003) and Gilligan (2005): 

Rehabilitation of vegetation within 
the stream and rivers and wetlands 

Removing thermal pollution 

Improving flow management of the 
environment 

Restoring fish passage in a number 
of the main barriers, which 
contributes to the control of exotic 
species  

Contributing to the control of alien 
species (e.g., traps) 

 

 

-Decreasing of alien 
species by 
increasing of native 
species 

 

-Increasing of 
shelter and habitat 
for native fish 
species 

 

-Increasing the 
population of  
Macquarie Perch in 
Tantangara 
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In particular case of Tantangara 
Dam, flow recommendations for 
2010-2011 used Macquarie Perch 
as the target species to improve 
conditions of spawning and 

larval development of this specie 

 

In particular case of ECD, Fish 
Management Plan (ACTEW 
Corporation, 2010) has been 
established which includes project 
of translocation of native species.  

 

-Decreasing the 
impact on the native 
fishes due to the 
ECD (e.g., by 
translocations)  
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  CLIMATE SCENARIO SELECTION C.

In order to reduce the analysis and minimise repetition, a smaller range of climate scenarios are 
selected using a scoring system. Once the full set of IHA parameters have been produced, each 
IHA metric is scored using the following system; 

- 0 points if only minor change is shown (<30%) 

- 1 point if moderate change occurs (30-70%) 

- 2 points if major change is shown (>70%) 

For Group 3 this system is slightly different; 

- 0 points if change is minor, i.e. less than 30days 

- 1 point if change is significant, i.e. more than 30days. 

Therefore the maximum number of points per group is; 

- Group 1 = 12 parameters x 5 metrics x 2 points = 120 points 

- Group 2 = 10 parameters x 5 metrics x 2 points = 100 points 

- Group 3 = 2 parameters x 1 metric x 1 point = 2 points 

- Group 4 = 4 parameters x 3 metrics x 2 points = 24 points 

- Group 5 = 4 parameters x 3 metrics x 2 points = 24 points. 

The points for each region under each different climate scenario are calculated. For the regions 
Cotter, Mid Molonglo, Mid Murrumbidgee, Queanbeyan and Upper Murrumbidgee, the maximum 
number of points is doubled since they contain both unregulated and regulated sites. The average 
points for each scenario across all regions are then calculated. Table C1 shows the paired 
average score, and the scenario pairs are ranked.  

Table  C1 again shows the paired average scores and helps to highlights certain groups of 
scenarios that may have a similar overall impact on the hydrology. These groups may indicate 
which scenarios best represent a range of differing overall impacts on the IHA parameters; 

- CSIRO shows the highest score by far at almost 100. 

- CNRM and INMCM show scores of just below 60. 

- GISS_AOM, MIUB, IPSL, MPI and GFDL give score between 25 and 40. 

- NCAR_CCSM, MRI, IAP, CCCMA_t63, MIROC and CCCMA_t47 show the lowest impacts 
with scores below 20 

- NCAR_PCM shows the lowest score of only 7 points.  
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Table C-1 Paired Average Scores, ranked in order from highest to lowest 

Paired Rank Average Score 

csiro 98.67 

cnrm 59.48 

inmcm 58.19 

giss_aom 39.52 

miub 37.12 

ipsl 31.81 

mpi 28.64 

gfdl 26.90 

ncar_ccsm 17.71 

mri 16.24 

iap 11.62 

cccma_t63 11.24 

miroc 10.57 

cccma_t47 8.62 

ncar_pcm 7.26 
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Figure 2 Paired Average Scores. Red circles highlight groups of scenarios which appear to 
have a similar overall impact on the IHA parameters as they have resulted in similar paired 
scenario selection average scores 
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  IHA INDICATOR SELECTION D.

Table D1 shows the comparison of the parameters selected using both the scoring 
selection method and correlation analysis; it is clear that there are significant differences 
in the selection of parameters using both methods. Due to the nature of our analysis, it is 
important that we absorb the benefits of both selection methods since we require a 
subset of parameters which does not include a large amount of co-linearity, but does 
highlight the significant alteration to the hydrology that the different climate scenarios 
may create. In order to do this, a stepwise selection method is used 

Stepwise Selection 

Stepwise selection follows a two-step process by analysing the parameters by one method at a 
time; 

1. Run correlation analysis to exclude highly correlated parameters. This step excludes the 
Yass results since they appear to significantly skew the results.  

2. Run scoring analysis to identify highly impacted parameters. 

Therefore, Step 1 excludes the following parameters; 

- Group 2: One of the five minima parameters, and one of the five maxima parameters, which 
one may depend upon the next step. 

- Group 5: Mean of all Negative Differences and Number of Falls  

- Table D2 shows the results of Step 2, which gives the highly impacted parameters that still 
remain within the subset chosen by Step 1.  

 

Table D-1.  Comparison of the parameters selected using both methods. 

 Group1 Group 2 Group 3 Group 4 Group 5 

1 – 
Scoring 

Mean flow in February 
and  March  

30-day 
Minima 

 

None 

 

Frequency of 
High and Low 
Pulses, 
Duration of 
Low Pulses 

None 

2 – 
Kendall’s 
Tau 

Mean monthly flows in 
January, February, 
March, April, May, 
June, July, August, 
September, October, 
November, December 

3-day 
Minima 
and   

3-day 
Maxima 

Julian 
Dates of 
1-day 
Annual 
Minima 
and 
Maxima 

Frequency of 
High and Low 
Pulses, 
Duration of 
High and Low 
Pulses 

Mean of all 
Positive 
Differences, 
Number of Rises 
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Table D-2. Selected parameters for further analysis, based on stepwise selection using the 
scoring and Kendall’s Tau methods 

Group 1 Mean monthly flows in February and March 

Group 2 30-day Minima 

Group 3 None 

Group 4 Frequency of High Pulses, Frequency of Low Pulses and Duration of Low Pulses 

Group 5 None 
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 IHA ANALYSIS RESULTS E.

Euclidean Distance 
Figure 5 shows the box-and-whisker plots for the ED results across (a) each climate 
condition for the unregulated sites, (b) the regulation conditions and each climate 
condition for the regulated sites, whilst Figure E2 shows the box-and-whisker plots (a-d) 
across the climate conditions with each management scenario (C1 to C4) for selected 
sites. The box-and-whisker plots show the median and inter quartile range (box) and the 
upper and lower ‘whiskers’ show the maximum and minimum result values, respectively. 
The plots show the value of 𝐸𝐷∗  =  1 − 𝐼𝐻𝐴.𝐸𝐷, (i.e. a scenario that exhibits zero 
hydrological alteration from the ‘natural’ state will produce an ED* value of 1, whilst an 
ED* value of zero or less represents major hydrological alteration. The ED* results can 
then be directly compared to the equivalent FSR results). 
 
As shown in Figure E2 (a, b), when comparing the regulation scenario to the individual 
climate scenarios, it is clear that regulation has more significant impact on flows than any 
of the climate conditions. The CSIRO_2 scenario is the only climate condition that 
exhibits a level of alteration as high as that shown by the regulation scenario, with a 
median ED* value around 0.4 at both regulated and unregulated stations. There is then a 
clear increase in hydrological impact when climate scenarios are combined with the 
management options. Across Figure E2 highly significant hydrological alteration is 
exhibited by the combined management scenarios; this is shown through the median 
ED* values which lie around or below zero for all 6 of the selected climate scenarios. 
 
There is little difference between the impacts of each of the management options. 
However, Figure E2 (c) appears to show the most impacted hydrological conditions 
across all of the climate scenarios, with narrower ranges, but lower median values in 
particular for the CSIRO_2 climate scenario which falls to almost -1.  
 
On comparing Figures E1 and E2 it is clear that population growth and increase in water 
use will amplify the impact of climate scenarios (i.e. the minor and moderate alteration 
scenarios now show significant changes to hydrology with ED* values close to, or below, 
zero.) 
 
It is noticeable also that the application of the management scenarios along with the 
climate conditions produces a much wider range of results (Figure E2), with wider boxes, 
and very extended whiskers towards higher levels of alteration.  
The impact of regulation shows a wide range across these stations, compared to the 
impact of each climate scenario. Whilst, the management options all consistently show 
much larger levels of alteration than either the regulation conditions or each of the 
climate scenarios.  
 
Under the CSIRO_2 scenario, the impacts of the management options appear the 
greatest, in particular under the C3 management option. Under the remaining climate 
scenarios, the median hydrological alteration caused by the management options 
appears to be relatively similar, around an ED* value of zero, representing major 
alteration. The differences between these climate scenarios come in the range of ED 
values covered; for the NCAR_PCM scenarios, the interquartile range of the ED* values 
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is very narrow, whereas for theCSIRO_1 scenario, the interquartile range shown by the 
management options is much wider.  
 
Finally, the difference between the impacts of the management options appears to be 
minimal across all climate scenarios. The management options C1 and C3 may shows 
slightly higher levels of alteration, with slightly lower values of ED*, however this 
difference becomes increasingly marginal as we move from the CSIRO scenarios 
through to the NCAR_PCM scenarios. 
 

 

Figure 1 (a) ED* results for unregulated sites across all regions, under each of the selected 
climate scenarios. (b) ED* results for regulated sites across the Cotter, Lower Molonglo, 
Mid Molonglo, Mid Murrumbidgee, Queanbeyan and Upper Murrumbidgee regions, under 
regulation conditions and each of the climate scenarios. The minimum ED* value for the 
post dam scenarios (excluded from the plot) is -3.35, experienced in the Queanbeyan 
region. 
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Euclidean Distance 

 
       (a)                    (b)     

 
      (c)                     (d) 

Figure 6 ED* results for sites across selected regulated sites, under each of the selected 
climate scenarios for Management Scenarios (a) C1, (b) C2, (c) C3 and (d) C4. 
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Euclidean Distance 

 

     (a)         (b)  

 

     (c)  

Figure 7 shows a comparison of the ED* values at the selected ACTEW stations (X700, 
X701, X702, X703, X704 and X705) under the three sets of conditions; regulation, climate 
and management. For each plot, the climate scenario is kept constant in order to compare 
the relative impact of regulation alone, and the addition of management options on top of 
the climate scenarios. 
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Euclidean Distance 
 

 

     d)        (e)   

 

(f) 

Figure 8Box-and-whisker plots comparing the ED* results under regulated conditions, 
each climate scenario ((a) CSIRO_1, (b) INMCM_1, (c) NCAR_PCM_1, (d) CSIRO_2, (e) 
INMCM_2 and (f) NCAR_PCM_2), and the four management options under each given 
climate scenario.  
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 IHA PARAMETER ANALYSIS F.

Figure 9, Figure 11, and Figure 14 (a) show for the change in IHA parameter under the 
regulation conditions and it is evident that all hydrological parameters experience major 
alteration, with maximum percentage changes either around or above 100%, this 
signifies the considerable flow regime changes put upon the river system under 
regulated conditions. More specifically, the frequency of low pulses is most significantly 
altered under regulation conditions, with median percentage changes above 100%. The 
duration of low pulses exhibits a wide range of alteration, which is perhaps significantly 
skewed by the results from the Queanbeyan region. Finally, the two monthly mean flows 
and annual 30-day minima all show similar levels of alteration under regulation. Classed 
between moderate to major, this alteration appears to be around 70%, but skewed 
upwards towards a maximum up to 100%.  
 
Through Figure 9, Figure 11, and Figure 14 (a) the regulation scenario can be compared 
to each of the climate scenarios. Across all of the climate scenarios, regulation produces 
much higher levels of hydrological alteration across all the parameters; however the 
relative impacts on different parameters very between the regulation conditions and the 
climate conditions. Under the climate conditions, the mean monthly flows are often the 
most affected parameter, however under regulation the frequency of high and low flows 
are the more highly altered flow characteristics. Under all climate conditions, the 30-day 
minima is relatively low compared to the monthly mean flows, however under regulation, 
the level of alteration of the 30-day minima is on a par with the monthly mean flows.  
 
Looking at the climate scenarios individually, it is clear that CSIRO_2 (Figure 9 (c)) 
produces the most impacted hydrological conditions with major alterations across most 
of the IHA parameters. The level of alteration then decreases under the CSIRO_1 
conditions (Figure 9 (b)). For the INMCM climate conditions (Figure 11), the level of 
alteration shown is moderate across the parameters. Lastly, the impacts of the 
NCAR_PCM scenarios are very minor (Figure 14), since this is the reason this scenario 
was chosen. Compared to the other scenarios, the characteristics of the hydrology still 
behave in similar patterns. In particular, the monthly mean flow parameters are the most 
altered by the climate scenarios, and the 30-day minima and duration of low pulses are 
the least altered.  
 
Finally the impact of the combined climate and management scenarios is assessed 
through Figure 10, Figure 11, Figure 13, Figure 14, Figure 16 and Figure 17. Across all 
climate conditions, the combined management scenarios produce much greater levels of 
hydrological alteration compared to the regulation conditions or the individual climate 
scenarios. One of the most noticeable changes from the individual scenarios to the 
combined options is the duration of low flows becomes one of the most impacted 
parameters.  
 
For the CSIRO_1 combined scenarios (Figure 11), all parameters are impacted to given 
similar median percentage change values, varying between 80 and 120%, and the 
impact of different management options are very similar. Whereas for the CSIRO_2 
combined scenarios (Figure 12), the frequency and duration of low flows are much more 
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significantly affected than the other parameters. In particular management option C3 
(Figure 12(c)) produced median percentage change values around 300%.  
 
For both INMCM scenarios, the 30-day minima results have an extreme maximum range 
which has been distorted by the Queanbeyan region results.  
 
For the NCAR_PCM combined scenarios (Figure 16 and Figure 17), the combination of 
the climate scenario and the management options has increased the alteration impact on 
the hydrological indicators to moderate to major, however due to the limited impact of the 
climate scenario, the median results for this combination are still less than 100%. The 
30-day minima results are again skewed, partly by the Queanbeyan results (maximum), 
but the interquartile range is also very wide, and positively skewed.  
The difference between the impacts of the two temperature increases for each pair of 
climate scenarios appears to decrease as the scenarios move from ‘major alteration’, i.e. 
CSIRO, to ‘minor alteration’, i.e. NCAR_PCM. Under the CSIRO conditions, the 
difference in impact between the two scenarios appears significant between Figure 11 
and Figure 12. Under the increased temperature of INMCM_2 (Figure 14), compared to 
INMCM_1 (Figure 12), the level of hydrological alteration is only increased slightly. 
Finally, the NCAR_PCM set of climate scenarios (Figure 16 and Figure 17), there 
appears to be very little difference between the temperature increases, which is also 
evident in Figure 15.  
 
Figures F3 to F11 show the box-and-whisker plots for the absolute percentage change in 
each of the selected IHA parameter; mean flow in February and March, annual 30-day 
minima, frequency of high and lows flows, and duration of low flows. The plots show the 
changes in the parameters under the post-dam conditions, each climate scenario and 
each of the combined climate and management options. 
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Figure 9. (a) Each selected IHA parameter under the regulation conditions for the regulated 
sites. The maximum percentage change in duration of low flow (excluded from the plot) 
was over 1000% at the Queanbeyan regulated sites. (b) Each selected IHA parameter under 
the CSIRO_1 climate scenario for all sites. The maximum percentage change in the 
frequency of low flows (excluded from the plot) was 148% experienced in the Cooma 
region. (c) Each selected IHA parameter under the CSIRO_2 climate scenario for all sites. 
The maximum percentage change in frequency of low flows (excluded from the plot) was 
over 300% experienced in the Cooma region. The upper quartile of this indicator (also 
excluded from plot) was 125% absolute change 

.  

(a) (b) 

(c) 
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Figure 10.  Absolute percentage change in each selected IHA parameter under the 
CSIRO_1 climate conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4. 

  

(a) (b) 

(c) (d) 
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Figure 11.  absolute percentage change in each selected IHA parameter under the CSIRO_2 
climate conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4. 

  

(a) (b) 

(c) (d) 
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Figure 12.  (a) Box-and-whisker plots for each selected IHA parameter under the regulation 
conditions for the regulated sites. The maximum percentage change in duration of low flow 
(excluded from the plot) was over 1000% at the Queanbeyan regulated sites. (b) Box-and-
whisker plots for each selected IHA parameter under the INMCM_1 climate scenario for all 
sites. (c) Box-and-whisker plots for each selected IHA parameter under the INMCM_2 
climate scenario for all sites. The maximum percentage change in the frequency of low 
flows (excluded from the plot) was 196% experienced in the Cooma region. 

  

(a) (b) 

(c) 
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Figure 13. Absolute percentage change in each selected IHA parameter under the 
INMCM_1 climate conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4. 

  

(a) (b) 

(c) (d) 
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Figure 14.  Figure F-6 Box-and-whisker plots of absolute percentage change in each 
selected IHA parameter under the INMCM_2 climate conditions for Scenario (a) C1, (b) C2, 
(c) C3 and (d) C4.  

  

(a) (b) 

(c) (d) 
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Figure 15.  (a) Box-and-whisker plots for each selected IHA parameter under the regulation 
conditions for the regulated sites. The maximum percentage change in duration of low flow 
(excluded from the plot) was over 1000% at the Queanbeyan regulated sites. (b) Box-and-
whisker plots for each selected IHA parameter under the NCAR_PCM_1 climate scenario 
for all sites. (c) Box-and-whisker plots for each selected IHA parameter under the 
NCAR_PCM_2 climate scenario for all sites. 

  

(a) (b) 

(c) 
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Figure 16.  Box-and-whisker plots of absolute percentage change in each selected IHA 
parameter under the NCAR_PCM_1 climate conditions for Scenario (a) C1, (b) C2, (c) C3 
and (d) C4. 

  

(a) (b) 

(c) (d) 
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Figure 17. Box-and-whisker plots of absolute percentage change in each selected IHA 
parameter under the NCAR_PCM_2 climate conditions for Scenario (a) C1, (b) C2,  

  

(a) (b) 

(c) (d) 
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  FSR ANALYSIS RESULTS G.

Hydrological Index 

Figure 18 shows the box-and-whisker plots for the FSR results across (a) each climate 
condition for the unregulated sites, (b) the regulation conditions and each climate 
condition for the regulated sites, whilst Figure F2 shows the box-and-whisker plots (a-d) 
across the climate conditions with each management scenario (C1 to C4) for selected 
sites. The plots show the value of HI, so a scenario that exhibits zero hydrological 
alteration from the ‘natural’ state will produce an HI value of 1, whilst an HI value of zero 
or less represents major hydrological alteration. 

 

Figure 18. (a) FSR HI results for unregulated sites across all regions, under each of the 
selected climate scenarios. (b) FSR HI results for regulated sites across the Cotter, Lower 
Molonglo, Mid Molonglo, Mid Murrumbidgee, Queanbeyan and Upper Murrumbidgee 
regions, under each of the climate scenarios  

  

(a) (b) 
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Figure 19.  The FSR HI across climate scenarios under each management scenario ((a) C1 
(b) C2 (c) C3 (d) C4. 

  

 
As seen in Figure 18 (a, b), a comparison of the individual climate scenarios shows that 
the NCAR_PCM scenarios have a less significant impact on the hydrological outcome 
than the other scenario types.  Similar to the IHA Analysis, the CSIRO_2 scenario 
exhibits the highest level of alteration with a median IH value between 0.5 and 0.6 at 
both regulated and unregulated stations.  In Figure 19management option C1 exhibits 
the greatest variation in the impact on the hydrological outcome, with HI values ranging 
from around 0.1 to 0.7 for most climate scenarios. 
 
There is a significant difference between the impacts of each of the management 
options.  However, Figure F2 (b, d) corresponding to management options 2 and 4 
appear to have very similar impacts on the hydrological conditions, with narrower ranges 
and higher median values, in particular for the NCAR_PCM climate scenarios, which is 
around 0.6. 
 
It is noticeable also that the application of the management scenarios along with the 
climate conditions, in general, produces a much wider range of results (Figure 19), with 
wider boxes, and very extended whiskers towards higher levels of alteration.  The 
exception to this finding would be CSIRO_2 for management options C2 and C4. 
 

(a) (b) 

(c) (d) 
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Figure 20 shows a comparison of the HI values at the selected ACTEW stations (X700, 
X701, X702, X703, X704, X705 and X706) under the four management options. For 
each plot, the climate scenario is kept constant in order to compare the relative impact of 
each of the management options on top of the climate scenarios. 

 

 

Figure 20. Box-and-whisker plots comparing the FSR HI results under regulated 
conditions, each climate scenario ((a) CSIRO_1, (b) INMCM_1, (c) NCAR_PCM_1, (d) 
CSIRO_2, (e) INMCM_2 and (f) NCAR_PCM_2), and the four management options under 
each given climate scenario. 

(a) (b) 

(c) (d) 

(e) (f) 
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Under climate CSIRO_2 scenario, the impacts of the management options appear the 
greatest, with the lowest median HI values as well as the smallest range of HI values 
covered.  Under the remaining climate scenarios, the median hydrological alteration 
caused by the management options appears to be relatively similar, around an HI value 
of 0.5, representing major alteration.  The differences between these climate scenarios 
come in the range of HI values covered; for the NCAR_PCM scenarios, the interquartile 
range of the HI values are generally wider for these scenarios, relative to the other 
scenarios. 
 
Finally, the difference between the impacts of the management options appears to be 
minimal across all climate scenarios.  The management options C1 and C3 may shows 
slightly higher levels of alteration, with slightly lower values of HI for the NCAR_PCM 
scenarios, however these differences are relatively marginal. 
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 FSR PARAMETER ANALYSIS H.

The impact of the combined climate and management scenarios is assessed through 
(Figure 21 -5). Across all climate conditions, the combined management scenarios 
produce greater levels of hydrological alteration compared to the post-dam conditions. 
One of the most noticeable changes from the individual scenarios to the combined 
options is the very low outlier values for proportion of zero flows, which is coming solely 
from the Upper Murrumbidgee site. 

For the CSIRO_1 and CSIRO_2 scenarios (Figure 22 and Figure 23), the seasonal 
amplitude, low flow spells, proportion of zero flows and monthly variation parameters 
have the greatest change.  The main difference between these two scenarios is that 
CSIRO_2 has mean annual flows equal to zero in almost all cases, the only exception 
occurring in management option C1. 

For both INMCM scenarios  (Figure 24 and Figure 25), the mean annual flow, high flow 
and high flow spells have low values across all management options. 

For the NCAR_PCM scenarios (Figure 26 and Figure 27), a much greater level of 
hydrological impact can be seen in the parameters, due to the addition of management 
options on top of the more conservative climate scenario.  Mean annual flow, high flow 
and high flow spells have low values, similar to the INMCM case, however we also see 
small low flow spell values for management option C1 across both NCAR_PCM 
scenarios. 

As noted in the previous analysis, the difference between the impacts of the two 
temperature increases for each pair of climate scenarios appears to decrease as the 
scenarios move from ‘major alteration’, i.e. CSIRO, to ‘minor alteration’, i.e. NCAR_PCM.  
Comparing Figures F9 and F10, there are virtually no changes between NCAR_PCM_1 
and NCAR_PCM_2 when looking across the same management option.  Under the 
CSIRO conditions, , Figure 22 and Figure 23, however we see significant differences 
even across the same management options.  For example low flow spells in Figure 23(a) 
has no variation, and a close to zero value, whereas in Figure 22(a) it has large variation 
and values as high as 0.5. 

Figures H 1-7 show the box-and-whisker plots for each of the FHR parameter sets; mean 
annual flow, seasonal amplitude, low flow, high flow, high flow spells, low flow spells, 
proportion of zero flows, flow-duration, monthly variation and seasonal period. The plots 
show the changes in the parameters under the post-dam conditions and each of the 
combined climate and management options. 
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Figure 21. Breakdown of the FSR parameters using post-dam conditions under each 
climate scenario ((a) CSIRO_1, (b) INMCM_1, (c) NCAR_PCM_1, (d) CSIRO_2, (e) INMCM_2 
and (f) NCAR_PCM_2) 

  

(a) (b) 

(c) (d) 

(e) (f) 
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Looking at the climate scenarios individually, CSIRO_2  Figure 23 (d) produces the most 
impacted hydrological conditions with major alterations across MAF, HF, HFS and LFS, 
and moderate alterations across the other parameters, with the exception of PoZ.  The 
level of alteration then decreases under the INMCM_2 conditions.  For the CSIRO_1 and 
INMCM_1 climate conditions, the level of alteration shown is moderate across most 
parameters.  Lastly, the impacts of the NCAR_PCM scenarios are again very minor, due 
to the nature of that scenario.  All parameters in the NCAR_PCM models are very close 
to 1 with very little variation between sites. 

 

 

Figure 22.Box-and-whisker plots of the FSR parameters under the CSIRO_1 climate 
conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4. 

(a) (b) 

(c) (d) 
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Figure 23. Box-and-whisker plots of the FSR parameters under the CSIRO_2 climate 
conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4. 

  

(a) (b) 

(c) (d) 
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Figure 24. Box-and-whisker plots of the FSR parameters under the INMCM_1 climate 
conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4.  

  

(a) (b) 

(c) (d) 
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Figure 25. Box-and-whisker plots of the FSR parameters under the INMCM_2 climate 
conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4.  

  

(a) (b) 

(c) (d) 
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Figure 26. Box-and-whisker plots of the FSR parameters under the NCAR_PCM_1 climate 
conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4.  

  

(a) (b) 

(c) (d) 
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Figure 27. Box-and-whisker plots of the FSR parameters under the NCAR_PCM_2 climate 
conditions for Scenario (a) C1, (b) C2, (c) C3 and (d) C4.. 

 

(a) (b) 

(c) (d) 
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  FLOW INDICATORS I.

Table I-1 Description and formula of flow stress indicators 

 
Index 
 

 
Description 
 

 
Formula 
 

Mean annual flow The difference in the percentage of time 
that the unimpacted and current mean 
annual flows are exceeded under 
unimpacted conditions. 
 
A departure from 1 means that the mean 
annual flow in the river has changed 
relative to the natural variability of the 
river system.  This occurs through either 
the extraction from or the addition of 
water (interbasin transfers) to the river. 

( ) ( )cileuilem QPQPA −×−= 21
  

Where:  Am  = Range-standardised mean annual flow index 
 Qc   =  Average current annual flow (ML/year) 
 Qu  =  Average unimpacted annual flow (ML/year) 
 Pile(Qc)  =  Proportion of years that the average current annual flow is exceeded under 
unimpacted conditions 
 Pile(Qu)  =  Proportion of years that the average unimpacted annual flow is exceeded under 
unimpacted conditions 
The equation is applied to five flow values, ranging from 80% to 120% of the mean. The mean 
annual flow index is calculated as the average of the range-standardised indices for the five flow 
intervals 
 

Flow duration  The change in overall flow regime. 
Considers all points of the flow duration 
curve to be of equal ecological relevance. 
 
A departure from 1 means that there has 
been some change to elements of the 
overall flow regime.  This occurs as a 
result of any water resource development 
activities. 

( ) ( ){ }
( ) ( ){ }






=

cileuile

cileuile

QPQP
QPQPmeanFD

,max
,min

 (3) 
Where:  FD  =  Flow duration index 
 Qn  =  flow under unimpacted conditions (at equal log intervals) 
 Pile(Qu)  =  the proportion of time that the flow Qn is exceeded under 
unimpacted conditions 
 Qc  =  the flow under current conditions that has an exceedance percentile equal to 
Pile(Qu) 
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  Pile(Qc)  =  the proportion of time that the flow Qc is exceeded under 
unimpacted conditions 

Variation Changes in variability (CV)  
the ratio of the daily flows under 
unimpacted and current conditions, where 
the coefficient of variation is defined as 
the standard deviation divided by the 
mean. 
 
A departure from 1 means that the 
variability of the flow in the river has 
changed.  This is most commonly a result 
of river regulation meaning that flows are 
now more constant than they would be 
under natural conditions 

( )
( )cu

cu

CVCV
CVCVCV
,max
,min

=
      (4) 

Where:   CV  =  Index of daily variability 
 CVc  =  Current daily coefficient of variation 
 CVu  =  Unimpacted daily coefficient of variation 
 

Seasonal 
Amplitude 

Reflects changes in depth of flooding and 
in-stream hydraulics. 
Reflects changes to the magnitude of 
flows in ‘low flow’ and ‘high flow’ 
periods. 
The seasonal amplitude index (SA) is a 
measure of the change in the difference 
between the maximum monthly flow and 
the minimum monthly flow. 
 
A departure from 1 means that the range 
between the lowest flows in the year and 
the highest flows in a year have changed 
relative to the natural variability of the 

The range-standardised index is calculated using the difference between the percentage of years that 
the unimpacted and current seasonal amplitudes are exceeded under unimpacted conditions: 

( ) ( )cileuile SAPSAPSA −×−= 21  (5) 
Where:  SA  =  range-standardised seasonal amplitude index 
 SAc  =  average current seasonal amplitude (ML/month) 
 SAu  =  average unimpacted seasonal amplitude (ML/month) 
 Pile(SAc) =  Proportion of time that the average current seasonal amplitude is 
exceeded under unimpacted conditions 
 Pile(SAu)  =  Proportion of time that the average unimpacted seasonal amplitude 
is exceeded under unimpacted conditions 
The average seasonal amplitude is computed as the arithmetic average of the time series of the 
difference between minimum and maximum monthly flows in each calendar year. 
 



Appendices:  Predicting Water Quality and Ecological Responses   262 

river system.  This typically occurs as a 
result of river regulation where water is 
released into the river during dryer times 
and stored during wetter times resulting in 
more constant flows irrespective of the 
season. 

Seasonal Period Reflects changes to the timing of ‘low 
flow’ and ‘high flow’ periods 
The index compares the unimpacted and 
current frequency distribution of 
maximum and minimum monthly flows. 
 
A departure from 1 means that the 
seasonality of flows within the river have 
changed (ie the months in which the 
highest and lowest flows are typically 
found).  This typically occurs as a result 
of river regulation and the use of the river 
to convey water to users. 
 

( )[ ] ( )[ ]
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  (6) 
 
Where:  SP_fd  =  Comparison of frequency distribution seasonal period index 
 PHCi  =  The percentage of years the ith month has the peak annual flow under 
current conditions (%). 
 PHUi  =  The percentage of years the ith month has the peak annual flow under 
unimpacted conditions (%). 
 PLCi  =  The percentage of years the ith month has the minimum annual flow under 
current conditions (%). 
 PLUi  =  The percentage of years the ith month has the minimum annual flow under 
unimpacted conditions (%). 
 

High Flows The change in the magnitude of high 
flows. 
Reflects changes to maximum depths and 
velocities. 
Reflects changes to disturbance events 
 
The high flow index is a measure of the 
change in high flow magnitude from 
unimpacted to current conditions. The 

The index is calculated using the difference between the percentage of years that the unimpacted and 
current 10 % exceedance flows (evaluated over the whole period of record) are exceeded by the 
annual 10 percentile flow (evaluated on a year-by-year basis) under unimpacted conditions.  The 
same process is then followed for the 20% exceedance flows: 

( ) ( )cileuile QPQPHF 10102110 −×−=  (7) 
Where:  HF10  =  Range-standardised low flow index based on the 10% exceedance flow 
 Q10c  =  Current 10 % exceedance flow (ML) 
 Q10n  =  Unimpacted 10 % exceedance flow (ML) 
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approach adopted to calculate the high 
flow index is similar to that used to 
calculate the low flow index. The monthly 
high flow index is calculated based on the 
10 % and 20 % exceedance flows.   
 
A departure from 1 means that the size of 
some of the highest flows in the river have 
changed relative to the natural variability 
of the high flows in the river.  Such 
changes typically occur when high flows 
are captured in storage. 
 

 Pile(Q10c)  =  Proportion of years that the current 10th percentile flow is exceeded 
by the annual 10th percentile unimpacted flow 
 Pile(Q10u)  =  Proportion of years that the unimpacted 10rd percentile flow is 
exceeded by the annual 10th percentile unimpacted flow 
The high flow index is calculated as the average of the variance corrected high flow index based on 
the 10% exceedance flow and the variance corrected high flow index based on the 20% exceedance 
flow: 

2
2010 HFHFHF +

=
 (8) 

Where:  HF  =  Range-standardised high flow index 
 HF10  =  Range-standardised high flow index based on the 10% exceedance flow 
 HF20  =  Range-standardised high flow index based on the 20% exceedance flow 
 

High Flow Spells Changes to flooding (magnitude, duration 
and frequency) 
Changes in the number, duration and 
interval of ‘spells’ (periods that the flow 
is above a threshold value)  
 
A departure from 1 means that the 
duration of 1,2 and 5 year floods in the 
river have changed.  This usually occurs 
when these minor flood flows are 
captured in storage, either in whole or in 
part. 
 

The high flow spell index (HFS) characterises the frequency and duration of high flow spells 
occurring within the period of record under both current and unimpacted conditions. A high flow 
spell is the period the flow is above a certain threshold value. 
High flow spells are considered for two thresholds corresponding to flows exceeded 10% and 20% 
of the time under unimpacted conditions.  
The duration of the spell events for each unimpacted threshold are determined for both the current 
and unimpacted flow series.  Then a partial series analysis is undertaken to derive a relationship 
between spell duration and average recurrence interval (ARI) for each threshold.  The relationship 
between ARI and duration for unimpacted conditions is then used to determine the event duration 
that corresponded to the 1, 2 and 5 year ARI events under unimpacted conditions for both thresholds. 
These event durations are then used to determine the ARI that corresponds to each duration under 
current conditions based on the relationship between ARI and duration for current conditions, 
The ratio of the unimpacted ARI and the current ARI is calculated for each threshold for the 
unimpacted 1, 2 and 5 year events and these values averaged to determine the daily high flow spells 
index (HFS).  Thus: 
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2
2010 SSHFS +

=
     (9) 

Where: 
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And  

3
))5,((
))5,((

))2,((
))2,((

))1,((
))1,((

5

5

2

2

1

1

20








++
=

C

C

C

C

C

C

ARIMAX
ARIMIN

ARIMAX
ARIMIN

ARIMAX
ARIMIN

S
  (11) 

 
 ARInC is the average recurrence interval under impacted conditions of the event duration that 
corresponds to the n year event duration determined under unimpacted conditions. 
 

Low Flows Changes to the magnitude of low flows  
 
A departure from 1 means that the size of 
some of the lowest flows in the river have 
changed relative to the natural variability 
of the low flows in the river.  Such 
changes can occur as a result of extraction 
of water during dry times (reducing the 
low flows) or the addition of water where 
the river is regulated and used to transfer 
water to users during dry times. 

The low flow index (LF) is a measure of the change in low flow magnitude under current and 
unimpacted conditions.  These are calculated based on the 90 % exceedance flow and the 80 % 
exceedance flow. 
The index measures the change in the magnitude of these two low flow statistics, relative to their 
natural inter-annual variability. The index is calculated using the difference between the percentage 
of years that the unimpacted and current 90 % exceedance flows (evaluated over the whole period of 
record) are exceeded by the annual 90 percentile flow (evaluated on a year-by-year basis) under 
unimpacted conditions. The same process is then followed for the 80% exceedance flows. 
The report for the pilot testing of the hydrology sub-index identified that the formula used in the 
draft method produced low flow index scores outside of the range of 0 to 1, and recommended that 
the formula be modified by removing the factor of 2 in calculating LFQ.  In line with that 
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. recommendation, the formula used for calculating the index scores is: 
( ) ( )cileuile QPQPLF 9090190 −−=  (12) 

Where:  LF90  = Range-standardised low flow index based on the 90% exceedance flow 
 Q90c  =  Current 90% exceedance flow evaluated using whole record (ML) 
 Q90u  =  Unimpacted 90% exceedance flow evaluated using whole record (ML) 
 Pile(Q90c)  =  Proportion of years that the annual 90th percentile unimpacted flow 
exceeds the current 90th percentile flow calculated from the whole record. 
 Pile(Q90u)  =  Proportion of years that the annual 90th percentile unimpacted flow 
exceeds the unimpacted 90th percentile flow calculated from the whole record. 
 
 
The low flow index is calculated as the average of the variance corrected low flow index based on 
the 90% exceedance flow and the variance corrected low flow index based on the 80% exceedance 
flow: 
 

2
8090 LFLFLF +

=
  (13) 

 
Where:  LF  =  Range-standardised low flow index 
 LF90  =  Range-standardised low flow index based on the 90% exceedance flow 
 LF80  =  Range-standardised low flow index based on the 80% exceedance flow 
(calculated using equation 14 but replacing 90 with 80 throughout) 
 

Low Flow spells Changes in the number, duration and 
interval of ‘spells’ (periods that the flow 
is below a threshold value)  
 

The low flow spells index (LFS) characterises the frequency and length of low flow spells occurring 
within the period of record under both current and unimpacted conditions. A low flow spell is the 
period that the flow is below a certain threshold value. 
Low flow spells are considered for two thresholds corresponding to flows exceeded 80% and 90% of 
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A departure from 1 means that the 
duration of the some of the lowest flows 
in the river have changed.  Such changes 
can occur as a result of the extraction of 
water during dry periods (thus extending 
the duration of the lowest flows) or the 
addition of water where the river is used 
to transfer water to users during dry 
periods (thus reducing the duration of the 
lowest flows). 
 

the time under unimpacted conditions.  
The duration of the spell events for each unimpacted threshold were determined for both current and 
unimpacted flow series, and in the same manner as adopted for high flow spells a partial series 
analysis is undertaken to derive a relationship between spell duration and average recurrence interval 
(ARI).  
For each threshold, the relationship between ARI and duration for unimpacted conditions is used to 
determine the event duration that corresponded to the 1, 2 and 5 year ARI under unimpacted 
conditions. These event durations are then used to determine the ARI that corresponds to each 
duration under current conditions based on the ARI and duration for current conditions.  
The ratio of the unimpacted ARI and the current ARI was calculated for each threshold for the 
unimpacted 1, 2 and 5 year events and these values averaged to determine the daily low flow spells 
index (LFS).  Thus:  

2
9080 SSLFS +

=
     (14) 
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And  
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 ARInC is the average recurrence interval under impacted conditions of the event duration that 
corresponds to the n year event duration determined under unimpacted conditions. 
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Zero flow Reflects changes in the ephemeral nature 
of streams 
 
A departure from 1 means that the 
proportion of time that the river 
experiences zero flows has changed.  This 
can occur as a result of the extraction of 
water during dry periods (thus extending 
the proportion of zero flow) or the 
addition of water where the river is used 
to transfer water to users during dry 
periods (thus reducing the proportion of 
zero flow). 

The proportion of zero flow index (PZ) compares the proportion of zero flow occurring under 
unimpacted and current conditions. The value of the index varies from zero to one, and similar to 
other indices, the direction of change is not evident from the value of the index. If the number of 
cease to flow spells is unchanged between unimpacted and current conditions, then the value of the 
index is one. 
PZ =1− 2× [max(PZu, PZc ) − min(PZu , PZc)] (17) 
Where:  PZ  =  Proportion of zero flow index 
 PZu  =  Proportion of zero flow over the whole record under unimpacted conditions 
PZc = Proportion of zero flow over the whole record under current conditions. 
Zero flows were defined as when the flow = 1% of mean (based on the recommendations of the pilot 
testing).   
 

Overbank Flow Changes to the duration of overbank flows  
 
A departure from 1 means that the 
duration of overbank flows have changed.  
Most typically this occurs as a result of 
the capture of small to medium sized 
floods in storage for release during dry 
periods. 

The Overbank Flow Duration Index (OFD) is calculated in a similar way to the proportion of zero 
flow index and compares the proportion of overbank flow occurring under unimpacted and current 
conditions.  The value of the index varies from zero to one, and similar to other indices, the direction 
of change is not evident form the value of the index.  
OFD =1−  [max(OFu, OFc ) − min(OFu , OFc)] (18) 
Where:  OFD  =  Overbank Flow Duration Index 
 OFu  =  Proportion of overbank flow over the whole record under unimpacted 
conditions 
 OFc  =  Proportion of overbank flow over the whole record under current conditions 
This index requires that the discharge at which flows go overbank for each assessment site is clearly 
defined.  
 

Overbank Spells Changes to the frequency of overbank 
events 
 
A departure from 1 means that the number 

The Overbank Flow Spells Index (OFS) is an analysis of the change in the duration between events 
that go overbank.  The analysis is similar in form to the current high flow spells analysis but in this 
case the flow threshold (Qf) would be set to be either the actual Overbank Flow (if known) or the 1 
or 2 year flood (from the unimpacted partial series). The duration of the inter-flood spell events for 
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of overbank flows has changed.  This is 
the result of the capture of small to 
medium sized flood in storage. 

the overbank flow (Qf) is determined for both current and unimpacted flow series and the durations 
ranked from longest to shortest. 
The median inter-flood spell is then calculated for the current flow series (Sc(Qf50)) and the 
unimpacted flow series (Su(Qf50)) using the top n/2 inter-flood spells (where n is the number of 
years of data).  The Overbank Flow Spells Index is then calculated as: 

( ) ( )( )
( ) ( )( )5050

5050

,max
,min

fufc

fufc

QSQS
QSQS

OFS =
. (19) 

This assumes that an increase in flood frequency will have the same effect as a decrease in flood 
frequency.  It is particularly important with this index to specify the way in which events are 
defined.   
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 HISTOGRAM OF THE SAMPLING FREQUENCY (FOR J.
MACROINVERTEBRATE DATASET)  

Sampling frequency of the 320 sites (1871 sample records) are shown. Most of the sites 
were sampled between 1 to 4 times; but also there are several sites with long term 
observation (up to 47 times over the time period of 17 years).  

Less than 10 sample records: 272 sites 

From 10 to 47 sample records: 48 sites 

 

 

 

Appendix J-1. Histogram of the sampling frequency (for macroinvertebrate dataset) 
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When river mesohabitats (edge and riffle) are explored separately, a very balanced 
distribution is observed.  

There are 909 sample records for edge and 962 for riffle. Please note that 200 sites were 
sampled only on one of the habitats, edge or riffle, meanwhile 120 sites were sampled 
on both habitat types. 

 

 

 

Appendix J-2. Histogram of the sampling frequency for macroinvertebrate dataset in the 
edge 
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Appendix J-3. Histogram of the sampling frequency for macroinvertebrate dataset in the 
riffle 

 

 DIFFERENCES BETWEEN EDGE AND RIFFLE COMMUNITY K.

Macroinvertebrate assemblage  

Macroinvertebrate samples were from two separated mesohabitats, edge and riffle. 
Despite a a priori difference in taxonomic composition between both mesohabitats was 
expected, we wanted to statistically test this assumption. To this aim, a non-metric 
multidimensional scaling (nMDS) (based on a Bray–Curtis resemblance matrix and 
fourth root transformed relative abundance supported by a pair-wise analysis of 
similarities (ANOSIM) taking into account the factor “mesohabitat” (with two levels, edge 
and riffle) was applied. ANOSIM tests was used to test the null hypothesis that there 
were no differences (at α= 0.01) in the composition of the macroinvertebrate 
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assemblages between edge and riffle. nMDS and ANOSIM are routines installed in the 
software PRIMER v6 (Clarke...). In addition to the mesohabitat factor, others were also 
checked (reference vs. non-reference, regulated vs. non-regulated, autumn vs. spring). 
We show here mesohabitat factor results, since it was the only factor which resulted in 
significant differences.   

Aggregated community indicators (O/E scores and Thermophobic Abundances) 

Analogously to multivariate, mesohabitat differences within O/E scores and 
Thermophobic Abundance were tested by means of Kruskal-Wallis test. 

 

Macroinvertebrate assemblage  

Significant difference in the composition and structure of the macroinvertebrate 
community between edge and riffle sampling locations was observed with a relatively 
high R value of 0.341, p<0.01. 

 

Appendix G1. A) nMDS plots derived from a Bray-Curtis similarity using fourth root 
transformed relative abundance of macroinvertebrates with microhabitat (riffle and edge) 
as factor (stress value is 0.24).  B) Frequency of permutation distribution (based on 999 
permutations) of the test statistic R under the hypothesis H1 of “no differences” within 
each level (edge and riffle). Vertical lines indicate the real R value (0.341). 

  

B A 
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Aggregated community indicators   

Significant difference between the mesohabitats edge and riffle were observed within the 
O/E (AUSRIVAS) - scores and Thermophobic Abundances (statistic values in Figure 
G2).  

 

 

Appendix G2. Box plots showing significant differences between the two mesohabitats 
(edge and riffle) for the abundance of thermophobic and the OE-Scores. 

 

These results precluded us to consider both mesohabitats together. Therefore, in the 
analysis hereafter the edge and riffle mesohabitats will be analysed separately to avoid 
the inclusion of this confounding factor in the models.  
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 THERMOPHILY L.

Table K-1 Table provided to the experts together the distributions plots (below). 
Thermophily scores estimated as described by Chessman (2009). In addition, occurrence 
(number of samples were family was present) and frequency of the families were provided 
to the experts. Only Families in red were considered strictly “thermophobic” as both 
experts agreed. 

Family Ocurrence 
(num. 
Samples) 

Frequency Thermophily 
Scores 

Termal 
Tolerance 

Expert 
1 

Expert 
2 

Athericidae 88 5.11 0.84 thermophobic yes yes 

Atriplectididae 50 2.91 0.81 thermophobic yes yes 

Calamoceratidae 233 13.54 0.88 thermophobic yes yes 

Calocidae 129 7.50 0.80 thermophobic yes yes 

Conoesucidae 611 35.50 0.87 thermophobic yes yes 

Glossosomatidae 322 18.71 0.89 thermophobic yes yes 

Gripopterygidae 1042 60.55 0.88 thermophobic yes yes 

Notonemouridae 185 10.75 0.84 thermophobic yes yes 

Tasimiidae 62 3.60 0.72 thermophobic yes yes 

Amphipoda 180 10.46 0.85 thermophobic yes   

Coloburiscidae 261 15.17 0.87 thermophobic yes   

Corduliidae 88 5.11 0.87 thermophobic yes   

Helicophidae 17 0.99 0.86 thermophobic yes   

Polycentropodidae 69 4.01 0.86 thermophobic yes   

Ptilodactylidae 
(Unident) 

60 3.49 0.81 thermophobic yes   

Scirtidae sp 426 24.75 0.87 thermophobic yes   

Aphroteniinae 30 1.74 0.76 thermophobic     

Austroperlidae 53 3.08 0.70 thermophobic     

Eustheniidae 17 0.99 0.82 thermophobic     

Glacidorbidae 24 1.39 0.77 thermophobic     

Helicopsychidae 97 5.64 0.81 thermophobic     

Libellulidae 11 0.64 0.84 thermophobic     

Megapodagrionidae 12 0.70 0.85 thermophobic     

Odontoceridae 38 2.21 0.71 thermophobic     

Oniscigastridae 69 4.01 0.81 thermophobic     

Philorheithridae 26 1.51 0.83 thermophobic     

Podonominae 17 0.99 0.81 thermophobic     

Tanyderidae sp 
(Unident) 

29 1.69 0.73 thermophobic     

 



Appendices:  Predicting Water Quality and Ecological Responses   275 

 

 

 

 



Appendices:  Predicting Water Quality and Ecological Responses   276 

 

 

 

 



Appendices:  Predicting Water Quality and Ecological Responses   277 

 

 

 

 



Appendices:  Predicting Water Quality and Ecological Responses   278 

 

 

Figure 2 Thermophobic distribution plots 

 



Appendices:  Predicting Water Quality and Ecological Responses   279 

Predictor variables for ecological responses (after removing highly correlated variables). Chapter 4. 

 

For hydrological variables the closest flow station to the macroinvertebrate sample site was selected. In the case of the climate variables 
(temperature and rainfall) also the closest station to the macroinvertebrate sampling site was selected. For these two categories of variables, 
climate and hydrology, temporal scales were taken into account. So, in addition to the flow (and related variables) and climate (temperature and 
rainfall) corresponding to the same date that the macroinvertebrate was collected, we considered the values of these variables 1, 3, 6 and 12 
months in advanced to the date that the macroinvertebrate was sampled. Landuse and geology was calculated as a percentage of the 
catchment area that each macroinvertebrate sampling site was within. Catchment areas were calculated using the watershed function within Arc 
View 9.3.1 (ESRI 2009) using a 25m digital elevation model (LPI - NSW Department of Finance and Services, 2006) for the Upper 
Murrumbidgee study area.  
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 ENVIRONMENTAL PREDICTORS M.

A description of the final environmental variables (after removing the highly correlated) used to model ecological responses for each habitat 
type: mean and range are shown. 

 

Table L-1 Geology statistics 

The main data source for the geology data is the Commonwealth of Australia (Geoscience Australia) 2009.  

Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

Dyke a natural or artificial slope or wall to regulate water levels % 0.00 0.05 0.00 0.00 0.05 0.00 
Granite a widely occurring type of intrusive, felsic, igneous rock which is 

granular and crystalline in texture 
% 0.23 1.00 0.00 0.18 1.00 0.00 

Limestone is a sedimentary rock composed largely of the minerals calcite 
and aragonite, 

% 0.01 1.00 0.00 0.01 0.55 0.00 

Mudstone a fine grained sedimentary rock whose original constituents were 
clays or muds 

% 0.02 0.94 0.00 0.03 0.76 0.00 

Sedmix sediment mixture % 0.06 1.00 0.00 0.02 1.00 0.00 
Volcsed a rock formed from magma erupted from a volcano % 0.08 1.00 0.00 0.05 1.00 0.00 
Sandstone a clastic sedimentary rock composed mainly of sand-sized 

minerals or rock grains 
% 0.25 1.00 0.00 0.24 1.00 0.00 

Others combine of all other types of sediments % 0.03 1.00 0.00 0.04 1.00 0.00 
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Table L-2 Land use statistics 

The data source for land use is the Australian Bureau of Agricultural and Resource Economics – Bureau of Rural Sciences (ABARE-BRS).  

Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

Intense intensive used areas (urban, industrial) % 0.18 1.00 0.00 0.02 0.91 0.00 
Agriculture summary of land used for production from 

irrigated and dryland agriculture and 
plantations 

% 0.39 1.00 0.00 0.18 1.00 0.00 

Table L-3 Water quality statistics 

The main data source for the water quality is spot measurements at time of macroinvertebrate sampling and for some nearby combined 
macroinvertebrate stations the calculated averages. 

Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

Temperature - Water Water Temperature ˚C 13.6 28.2 0.9 12.7 26.4 3.6 

Dissolved Oxygen Dissolved Oxygen mg/L 9.29 13.85 0.91 9.96 13.83 1.30 

pH Acidity pH 7.56 9.78 4.13 7.47 9.39 4.13 

EC Electrical Conductivity or Salinity μS/cm 222.21 1650.00 0.03 83.04 1343.00 0.03 

Turbidity Turbidity NTU 6.24 49.00 0.00 6.79 150.00 0.00 
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Table L-4 Weather Statistics 

The data source for the weather data are the Australian Capital Territory Electricity and Water Authority (ACTEW) and the Bureau of 
Meteorology (BOM). 

Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

rainfall_mean30 Average for daily rainfall data  over the 
previous 30 days with a minimum of 23 
days. 

mm 1.78 0.00 5.19 1.75 0.00 5.94 

rainfall_cv30 Coefficient of variation for daily rainfall 
data over the previous 30 days with a 
minimum of 23 days.  

3.0 0.0 5.5 2.9 0.0 5.5 

rainfall_mean90 Average for daily rainfall data  over the 
previous 90 days with a minimum of 68 
days. 

mm 1.9 0.2 5.7 2.1 0.2 4.8 

rainfall_cv90 Coefficient of variation for daily rainfall 
data over the previous 90 days with a 
minimum of 68 days.  

3.2 1.9 6.4 3.0 1.6 6.4 

rainfall_mean365 Average for daily rainfall data  over the 
previous year (365 days) with a minimum 
of 274 days. 

mm 1.9 0.8 4.1 2.1 0.9 4.7 

rainfall_cv365 Coefficient of variation for daily rainfall 
data over the previous year (365 days) 
with a minimum of 274 days.  

3.3 2.4 5.0 3.1 2.2 4.8 

tempmax_mean30 Average for the Maximum Temperatur in 
˚C over the previous 30 days with a 
minimum of 23 days. 

˚C 19.7 14.0 30.1 19.2 12.3 29.3 
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

tempmax_cv30 Coefficient of variation for daily maximum 
temperature data over the previous 30 
days with a minimum of 23 days.  

0.2 0.1 0.3 0.2 0.1 0.4 

tempmax_mean180 Average for daily maximum temperatur 
data over the previous 90 days with a 
minimum of 68 days. 

˚C 19.2 13.0 27.4 19.2 12.7 26.2 

tempmax_cv180 Coefficient of variation for daily maximum 
temperature data over the previous 180 
days with a minimum of 135 days.  

0.3 0.2 0.4 0.3 0.2 0.4 

tempmax_mean365 Average for daily maximum temperature 
data over the previous year (365 days) 
with a minimum of 274 days. 

˚C 19.8 17.7 21.9 19.3 17.3 21.6 

tempmax_cv365 Coefficient of variation for daily maximum 
temperature data over the previous year 
(365 days) with a minimum of 274 days.  

0.3 0.3 0.4 0.3 0.3 0.4 

tempmin_cv90 Coefficient of variation for daily minimum 
temperature data over the previous 90 
days with a minimum of 68 days.  

2.2 -70.7 192.3 0.9 -38.7 179.5 

tempmin_mean365 Average for daily minimum temperature 
data over the previous year (365 days)  
with a minimum of 274 days. 

˚C 
6.5 3.1 10.6 6.3 3.1 9.0 
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Table L-5 Flow and Discharge Statistic 

The data source for the flow data are the Australian Capital Territory Electricity and Water Authority (ACTEW) and the Office of Water from the 
NSW Department of Primary Industries. 

Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

flow_cv30 Coefficient of variation for daily flow data 
over the previous 30 days with a minimum 
of 23 days.  

0.80 3.96 0.00 0.57 3.27 0.02 

flow_perc10_30 Count of days for the previous 30 days, 
with a minimum of 23 days, if daily "flow 
percentile" are less than 10 % 

days 0.98 24.00 0.00 0.45 9.00 0.00 

flow_cv90 Coefficient of variation for daily flow data 
over the previous 90 days with a minimum 
of 68 days.  

1.39 5.45 0.00 1.01 5.16 0.05 

flow_perc10_90 Count of days for the previous 90 days, 
with a minimum of 68 days, if daily "flow 
percentile" are less than 10 % 

days 3.83 37.00 0.00 1.95 26.00 0.00 

flow_perc90_90 Count of days for the previous 90 days, 
with a minimum of 68 days, if daily "flow 
percentile" are greater than 90 % 

days 15.01 90.00 0.00 17.91 80.00 0.00 

flow_cv180 Coefficient of variation for daily flow data 
over the previous 180 days with a 
minimum of 135 days.  

1.93 7.60 0.04 1.36 6.75 0.09 

flow_mean365 Average for daily flow data over the 
previous year (365 days) with a minimum 
of 274 days. 

Discharge 
Vol. (Ml) 192.45 3144.38 1.25 135.87 1211.88 3.88 
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

flow_cv365 Coefficient of variation for daily flow data 
over the previous year (365 days) with a 
minimum of 274 days.  

2.64 13.60 0.71 1.67 7.27 0.49 

flow_perc10_365 Count of days for the previous year (365 
days), with a minimum of 274 days, if 
daily "flow percentiles" are less than 10 % 

days 16.78 79.00 0.00 11.89 107.00 0.00 

flow_perc90_365 Count of days for the previous year (365 
days), with a minimum of 274 days, if 
daily "flow percentiles" are greater than 90 
% 

days 61.13 300.00 0.00 77.46 266.00 0.00 

Days CTF (90days) Count of days for the previous 90 days, 
with a minimum of 68 days, if daily flow is 
"o" 

days 2.66 89.00 0.00 0.23 28.00 0.00 

Days CTF (Year) Count of days for the previous year (365 
days), with a minimum of 274 days, if 
daily flow is "o" 

days 11.03 199.00 0.00 1.85 75.00 0.00 

flow_percentile Ranking the daily flow data (used formula: 
"100*(rank/n rank)")  

63.22 100.00 4.25 67.57 98.75 10.36 
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Table L-6 Habitat Statistics 

The main data source for the habitat data are spot measurements at time of macroinvertebrate sampling and for some nearby combined 
macroinvertebrate stations the calculated averages based on the ACT FIELD SAMPLING SHEET (Version 2.5 Dec 2000). The data were 
stored from recent and historical monitoring projects conducted by the Institute for Applied Ecology (IAE). The Altitude is based on the DEM 
produced by the Department of Lands (Land & Property Information Division, Spatial Data Services), New South Wales. 

Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

% Cover of Riparian 
Zone by Grass Ferns 

  

From top view, estimation of outline cover; may or may not total >100% % 72 100 0 48 100 0 

% Cover of Riparian 
Zone by Shrubs 

From top view, estimation of outline cover; may or may not total >100% % 23 95 0 34 95 0 

% Cover of Riparian 
Zone by Trees Greater 
than 10m 

From top view, estimation of outline cover; may or may not total >100% 
% 22 100 0 21 80 0 

% Cover of Riparian 
Zone by Trees Less 
than 10m 

From top view, estimation of outline cover; may or may not total >100% 
% 17 90 0 22 90 0 

Altitude Height above sea level (measurement taken from the DEM) m 692 1351 364 723 1350 364 

Bank Full Width Distance between tops of banks m 18 140 0 15 140 0 

Bank Height Measured from water surface vertical to top of bank m 2 105 0 2 105 0 

Bank Stability Unstable. Many eroded areas. Side slopes > 60% common. "Raw" 
areas frequent along straight sections and bends. (poor: 0-2), 
Moderately unstable. Moderate frequency and size of erosional areas. 
Side slopes up to 60% on some banks. High erosion potential during 
extreme/high flows (Fair: 3-5), Moderately stable. Infrequent, small 
areas of erosion mostly healed over. Side slopes up to 40% on one 
bank. Slight potential in extreme floods (Good: 6-8), Stable. No 

 
7 10 0 7 10 0 
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

evidence of erosion or bank failure. Side slopes generally <30%. Little 
potential for future problem. (Excellent 9-10) 

Bank Vegetative 
Stability 

% of stream bank surfaces covered by vegetation, gravel or larger 
material: Less than 25% = 0-2, 25-49% = 3-5, 50-79% =  6-8, over 
80% =  9-10)  

8 10 0 8 10 0 

Bare ground are ground above water mark: area in riparian zone expected to be 
vegetated but bare (Average over Left and right bank) % 9 80 0 8 75 0 

Bottom Scouring and 
Deposition 

More than 50% of the bottom changing nearly year long. Pools almost 
absent due to Deposition. Only large rocks in riffle exposed (0-3), 30-
50% affected. Deposits and scours at obstruction and bends. Some 
deposition in pools. (4-7), 5-30% affected. Scours at constrictions and 
where grades steepen, some deposition in pools (8-11), Less than 5% 
of the bottom affected by scouring and deposition (12-15) 

 
9 15 0 11 15 0 

Catchment Area 
Upstream 

Catchment area above sample site m² 641 9188 1 428 9188 0 

Channel Alteration Heavy deposits of fine materials, increased bar development; most 
pools filled with silt; and/or extensive channelization (0-3), Moderate 
deposition of new gravel, coarse sand, on old and new bars; pools 
partly filled w/silt; and/or embankments on both banks (4-7), few new 
increase in bar formation, mostly from coarse gravel; and/or some 
channelization present (8-11), Little or no enlargement of islands or 
point bars and/or no channelization (12-15) 

 
11 15 0 11 15 0 

Habitat score 
(habscore) 

Sum of Bottom Substrate, Embeddedness, Velocity, Depth Category, 
Channel Alteration, Bottom Scouring Deposition, Pool, Riffle Run Bend 
Ratio, Bank Stability, Bank Veg Stability, Streamside Cover  

88 145 0 99 133 0 

Edge% Reach: 5 times mode bank-full width either side of edge sampling site, % 53 100 0    
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

unless bank-full width <10m then the minimum reach length = 100m. 

Edge Bedrock% substratum description for Edge % 6 98 0    

Edge Clay% substratum description for Edge (<0.004mm) % 6 80 0    

Edge Cobble% substratum description for Edge (64-256mm) % 15 80 0    

Edge Depth Mean after 3 times cm 29 142 0    

Edge Detritus% organic substratum for Edge (sticks, wood or course particulate organic 
material) % 16 100 0    

Edge Muck Mud% organic substratum for Edge (5 times the mode bank-full width either 
side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (black, very fine organics) 

% 8 100 0    

Edge Periphyton substratum description for Edge (Category: 1= <10% 2=10-35% 3=35-
65% 4=65-90% 5=>90%)  

3 5 0    

LAT Latitude DD -35.5 -35.8 -36.5 -35.5 -35.8 -36.5 

Local Catchment 
Erosion 

 none (1), some (2), Moderate (3), Heavy (4) 
 

2 4 0 2 4 0 

LONG Longitude DD 149.1 149.5 148.5 148.9 149.5 148.5 

Reach Bedrock% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) 

% 9 98 0 6 80 0 

Reach Boulder% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (>256mm) 

% 11 50 0 12 50 0 
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

Reach Clay% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (<0.004mm) 

% 4 80 0 1 70 0 

Reach Cobble% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (64-256mm) 

% 20 90 0 29 90 0 

Reach Detritus% organic substratum for Reach (5 times the mode bank-full width either 
side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (sticks, wood or course particulate 
organic material) 

% 10 80 0 10 80 0 

Reach Filamentous 
Algae 

substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (Category: 1= <10% 2=10-35% 3=35-
65% 4=65-90% 5=>90%) 

 
2 5 0 2 5 0 

Reach Gravel% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (2-16mm) 

% 15 60 0 13 40 0 

Reach Macrophytes substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (Category: 1= <10% 2=10-35% 3=35-
65% 4=65-90% 5=>90%) 

 
2 5 0 1 5 0 

Reach Moss substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (Category: 1= <10% 2=10-35% 3=35-
65% 4=65-90% 5=>90%) 

 
1 5 0 1 4 0 
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

Reach Muck Mud% organic substratum for Reach (5 times the mode bank-full width either 
side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (black, very fine organics) 

% 7 100 0 5 100 0 

Reach Pebble% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (16-64mm) 

% 15 70 0 18 70 0 

Reach Periphyton substratum description for Reach (Category: 1= <10% 2=10-35% 
3=35-65% 4=65-90% 5=>90%)  

3 5 0 3 5 0 

Reach Sand% substratum description for Reach (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (0.06-2mm) 

% 24 95 0 16 80 0 

Reach Silt% substratum description for Reach (0.004-0.06mm) % 14 100 0 4 98 0 

Riffle % Reach: 5 times mode bank-full width either side of riffle sampling site, 
unless bank-full width <10m then the minimum reach length = 100m % 

   
36 100 0 

Riffle Bedrock% substratum description for Riffle % 
   

4 95 0 

Riffle Boulder% substratum description for Riffle (>256mm) % 
   

13 70 0 

Riffle Clay% substratum description for Riffle (<0.004mm) % 
   

0 10 0 

Riffle Cobble% substratum description for Riffle (64-256mm) % 
   

37 90 0 

Riffle Depth Mean after 3 times cm 
   

16 89 0 

Riffle Detritus% organic substratum for Riffle (sticks, wood or course particulate organic 
material) % 

   
7 90 0 

Riffle Filamentous 
Algae 

substratum description for Riffle (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (Category: 1= <10% 2=10-35% 3=35-     

1 5 0 
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Predictor Variable Description Unit 
EDGE RIFFLE 

AVG MAX MIN AVG MAX MIN 

65% 4=65-90% 5=>90%) 

Riffle Gravel% substratum description for Riffle (2-16mm) % 
   

12 60 0 

Riffle Macrophytes substratum description for Riffle (Category: 1= <10% 2=10-35% 3=35-
65% 4=65-90% 5=>90%)     

1 5 0 

Riffle Muck Mud% organic substratum for Riffle (5 times the mode bank-full width either 
side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (black, very fine organics) 

% 
   

2 70 0 

Riffle Pebble% substratum description for Riffle (16-64mm) % 
   

21 80 0 

Riffle Periphyton substratum description for Riffle (Category: 1= <10% 2=10-35% 3=35-
65% 4=65-90% 5=>90%)     

2 5 0 

Riffle Sand% substratum description for Riffle (5 times the mode bank-full width 
either side of riffle sampling site, unless bank-full width <10m then the 
minimum reach length = 100m) (0.06-2mm) 

% 
   

11 50 0 

Riffle Silt% substratum description for Riffle (0.004-0.06mm) % 
   

2 40 0 

Riparian width Average between left and rigth banks area where waterway interacts 
with vegetation, facing 100 m downstream m 6 60 0 5 100 0 

Shading of River Estimated as if sun directly overhead: 1 = <5% , 2 = 6-25% , 3 = 26-
50% , 4 = 51-75% , 5 = >76%  

2 5 0 2 5 0 

Streamside Vegetation 
Cover 

Over 50% of the streambank has no vegetation and dominant material 
is soil, rock, bridge materials, culverts, or mine tailings (0-2), Dominant 
vegetation is grass, sedge, ferns (3-5), Dominant vegetation shrub (6-
8), Dominant vegetation is of tree form (9-10) 

 
7 40 0 7 10 0 

Stream width Mode width from edges of water m 10 100 0 8 100 0 
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 SUMMARY OF THE DATASET FOR THE ENVIRONMENTAL N.
VARIABLES 

Table M-1 Summary of geology statistics 

Geology variable Description 

Number of Variable 13 

Last Update 2008 

Number of sites area-wide 

Main data source Geoscience Australia 

 
Table M-2 Summary of land use dataset  

Land use variable Description 

Number of Variable 3 

Last Update 2005-2006 

Number of sites area-wide 

Main data source ABARE 

 
Table M-3 Summary of the water quality dataset 

Water Quality variable Description 

Number of variables 8 

Time period of records 1967-2011 

Number of records 40530 

Number of sites 433 

Number of variables 8 

Main data source 

Monitoring River Health Initiative (MRHI) 

RBA Database 

ACT WQ SITE 

Evan Harrison PhD 

Tantangara Project 

Murray Cod Project 

Canberra Salinity Logging Station 
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Table M-4 Summary of rainfall dataset 

Rainfall variable Description 

Number of Variable 3 

Time records 1870-2012 

Number of records 636363 

Number of sites 119 

Main data source ACTEW and BOM 

 
Table M-5 Summary of temperature dataset  

Temperature variable Description 

Number of Variable 5 

Time records 1965-2012 

Number of records 66947 

Number of sites 15 

Main data source ACTEW and BOM 

 
Table M-6 Summary of hydrological dataset 

Historical Flow Data variable Description 

Number of Variable 22 

Time period of records 1910-2012 

Number of records 627686 

Number of sites 38 

Main data source ACTEW and NSW 

 
Table M-7 Summary of habitat characteristics dataset including the landscape variables 

Habitat variable Description 

Number of variables 68 (+ 6 landscape) 

Time records 1970-2012 

Number of records 2387 

Number of sites 449 

Main data source 

RBA Database 

ACT WQ SITE 

Evan Harrison PhD 

Tantangara Project 
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